Go to main content

PDF

Description

Mechanically flexible and one-dimensional electronic interconnects are nowadays a standard, enabling various applications, and offering a wide range of advantages. Taking planar one-dimensional flexible systems onto the next level of high-speed and high performance electronic systems, various efforts on connecting rigid integrated circuits (ICs), e.g. microcontrollers, batteries, sensors, actuators etc., to flexible interconnects exist. In this work, a comprehensive surface mount technology (SMT) for rigid and silicon dioxide based ICs onto flexible and glycol-modified Polyethylene Terephthalate screen-printed interconnects is developed. Here, the SMT solution addresses the following challenges: low thermal budget of Polyethylene Terephthalate, non-solderability of the screen-printed structures, aluminum coating of the IC, and small-sized pitches of the IC. Besides, various reliability aspects of the assembled electrical end product are investigated.

Details

Files

Statistics

from
to
Export
Download Full History
Formats
Format
BibTeX
MARCXML
TextMARC
MARC
DublinCore
EndNote
NLM
RefWorks
RIS