Go to main content

PDF

Description

In this work we explore the usefulness and practicality of domain adaptation and multi-domain learning methods in question-answer generation. Unlike recent work in question-answer generation which focuses on processing single-domain data to create synthetic reading comprehension datasets (Du and Cardie, 2018), we propose a question-answer generation system that can adapt to datasets containing multiple domains while still achieving similar or better performance in single domains compared to a baseline. We apply our system, consisting of an answer extraction system and a question generation system, to the SQuAD and SciQ reading comprehension datasets and evaluate its efficacy in mixed- and single-domain settings. Our domain adaptation method achieves higher performance than baselines on the mixed-domain and SciQ datasets in both answer extraction and question generation.

Details

Files

Statistics

from
to
Export
Download Full History
Formats
Format
BibTeX
MARCXML
TextMARC
MARC
DublinCore
EndNote
NLM
RefWorks
RIS