Let A be an m x n (m >= n) complex matrix. It is known that there is a unique polar decomposition A = QH, where Q*Q = I, the n x n identity matrix, and H is positive definite, provided A has full column rank. This note addresses the following question: how much may Q change if A is perturbed? For the square case m = n our bound, which is valid for any unitarily invariant norm, is sharper and simpler than Mathias's (SIAM J. Matrix Anal. Appl., 14 (1993), 588-597.). For the non-square case, we also establish a bound for unitarily invariant norm, which has not been done in literature.
Title
New Perturbation Bounds for the Unitary Polar Factor
Published
1994-12-01
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
CSD-94-852
Type
Text
Extent
9 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).