Go to main content

PDF

Description

Let A be an m x n (m >= n) complex matrix. It is known that there is a unique polar decomposition A = QH, where Q*Q = I, the n x n identity matrix, and H is positive definite, provided A has full column rank. This note addresses the following question: how much may Q change if A is perturbed? For the square case m = n our bound, which is valid for any unitarily invariant norm, is sharper and simpler than Mathias's (SIAM J. Matrix Anal. Appl., 14 (1993), 588-597.). For the non-square case, we also establish a bound for unitarily invariant norm, which has not been done in literature.

Details

Files

Statistics

from
to
Export
Download Full History
Formats
Format
BibTeX
MARCXML
TextMARC
MARC
DublinCore
EndNote
NLM
RefWorks
RIS