Many "big data" applications need to act on data arriving in real time. However, current programming models for distributed stream processing are relatively low-level, often leaving the user to worry about consistency of state across the system and fault recovery. Furthermore, the models that provide fault recovery do so in an expensive manner, requiring either hot replication or long recovery times. We propose a new programming model, discretized streams (D-Streams), that offers a high-level functional API, strong consistency, and efficient fault recovery. D-Streams support a new recovery mechanism that improves efficiency over the traditional replication and upstream backup schemes in streaming databases - parallel recovery of lost state-and unlike previous systems, also mitigate stragglers. We implement D-Streams as an extension to the Spark cluster computing engine that lets users seamlessly intermix streaming, batch and interactive queries. Our system can process over 60 million records/second at sub-second latency on 100 nodes.
Title
Discretized Streams: A Fault-Tolerant Model for Scalable Stream Processing
Published
2012-12-14
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
EECS-2012-259
Type
Text
Extent
16 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).