Description
In this dissertation, to demonstrate how to handle these challenges, we chose two main problem domains: (I) Scheduling in parallel data intensive computational frameworks for improved tail latencies, and (II) Performance-aware resource allocation in the public cloud environments for meeting user-specified performance and cost goals.
We begin by presenting Wrangler, a system that predicts when stragglers (slow-running tasks) are going to occur based on cluster resource utilization counters and makes scheduling decisions to avoid such situations. Wrangler introduces a notion of a confidence measure with these predictions to overcome modeling uncertainty. We then describe our Multi-Task Learning formulations that share information between the various models, allowing us to significantly reduce the cost of training. To capture the challenges of resource allocation in the public cloud environments, we present key observations from our empirical analysis based on performance profiles of workloads executing across different public cloud environments. Finally, we describe PARIS, a Performance-Aware Resource Inference System, that we built to enable cloud users to select the best VM (virtual machine) for their applications in the public cloud environments so as to satisfy any performance and cost constraints.