I describe an approach to modeling the dynamics of human category learning using a tool from nonparametric Bayesian statistics called the Dirichlet process mixture model (DPMM). The DPMM has a number of advantages over traditional models of categorization: it is interpretable as the optimal solution to the category learning problem, given certain assumptions about learners' biases; it automatically adjusts the complexity of its category representations depending on the available data; and computationally efficient algorithms exist for sampling from the DPMM, despite its apparent intractability. When applied to the data produced by previous experiments in human category learning, the DPMM usually does a better job of explaining subjects' performance than traditional models of categorization due to its increased flexibility, despite having the same number of free parameters.
Title
Modeling Categorization as a Dirichlet Process Mixture
Published
2007-05-18
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
EECS-2007-69
Type
Text
Extent
44 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).