Several control systems in safety-critical applications involve the interaction of an autonomous controller with one or more human operators. Examples include pilots interacting with an autopilot system in an aircraft, and a driver interacting with automated driver-assistance features in an automobile. The correctness of such systems depends not only on the autonomous controller, but also on the actions of the human controller. In this paper, we present a formalism for human-in-the-loop control systems. Particularly, we focus on the problem of synthesizing a semi-autonomous controller from high-level temporal specifications that expect occasional human intervention for correct operation. We present an algorithm for this problem, and demonstrate its operation on problems related to driver assistance in automobiles.
Title
Synthesis for Human-in-the-Loop Control Systems
Published
2013-07-17
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
EECS-2013-134
Type
Text
Extent
14 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).