PDF

Description

We describe an implementation of the Communication-Avoiding QR (CAQR) factorization that runs entirely on a single graphics processor (GPU). We show that the reduction in memory traffic provided by CAQR allows us to outperform existing parallel GPU implementations of QR for a large class of tall-skinny matrices. Other GPU implementations of QR handle panel factorizations by either sending the work to a general-purpose processor or using entirely bandwidth-bound operations, incurring data transfer overheads. In contrast, our QR is done entirely on the GPU using compute-bound kernels, meaning performance is good regardless of the width of the matrix. As a result, we outperform CULA, a parallel linear algebra library for GPUs, by up to 13x for tall-skinny matrices.

We also discuss stationary video background subtraction as a motivating application. We apply a recent statistical approach, which requires many iterations of computing the singular value decomposition of a tall-skinny matrix. Using CAQR as a first step to getting the singular value decomposition, we are able to get the answer 3x faster than if we use a traditional bandwidth-bound GPU QR factorization tuned specifically for that matrix size, and 34x faster than if we use Intel's Math Kernel Library (MKL) QR factorization.

Details

Files

Statistics

from
to
Export
Download Full History