We investigate the effectiveness of stochastic hillclimbing as a baseline for evaluating the performance of genetic algorithms (GAs) as combinatorial function optimizers. In particular, we address four problems to which GAs have been applied in the literature: the maximum cut problem, Koza's 11-multiplexer problem, MDAP (the Multiprocessor Document Allocation Problem), and the jobshop problem. We demonstrate that simple stochastic hillclimbing methods are able to achieve results comparable or superior to those obtained by the GAs designed to address these four problems. We further illustrate, in the case of the jobshop problem, how insights obtained in the formulation of a stochastic hillclimbing algorithm can lead to improvements in the encoding used by a GA.
Title
Stochastic Hillclimbing as a Baseline Method for Evaluating Genetic Algorithms
Published
1994-09-28
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
CSD-94-834
Type
Text
Extent
22 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).