Controlling surface forces through nano/microstructure represents an important advancement in tribology. Primarily it suggests the possibility of fabricating adhesive and friction pads from a vast range of materials and processing methods, hence allowing for the production of tribological surfaces that are cheap, bio-compatible, durable, temperature resistant, and self-cleaning. Current research in this area draws inspiration from gecko lizards, which achieve rapid wall-climbing with arrays of keratinous, micron-sized fibers. This work explores the central role of the microfiber array in gecko wall-climbing and applies these insights to the development of adhesive and ultra-high friction surfaces from otherwise non-adhesive, low friction materials.
Title
Enhanced Friction and Adhesion with Biologically Inspired Fiber Arrays
Published
2007-05-15
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
EECS-2007-55
Type
Text
Extent
143 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).