Go to main content

PDF

Description

Despite widespread application, packet classification is implemented and deployed in an ad-hoc manner at different layers of the protocol stack. Moreover, high speed packet classification, in presence of a large number of classification rules, is both resource and computation intensive. We propose a scalable layer-agnostic packet classification framework (Lattice) that generalizes classifier design and enables offloading part of computation and memory requirements to collaborators (e.g., end hosts). Lattice eliminates per-packet classification and per-flow states in classifiers to increase scalability and decreases vulnerability to state-based DoS attacks. Furthermore, Lattice is incentive compatible in that collaborators cannot get better service by lying, and it incentivizes deployment by giving preferential treatment to packets carrying Lattice-related information. Finally, Lattice-enabled classifiers remain semantically equivalent to their unmodified counterparts. To evaluate Lattice, we have built a prototype using the Click software router and implemented multiple Lattice-enabled classifiers. Lattice-enabled firewalls perform at least 2X faster than unmodified counterparts and scale well with the increasing number of classification rules.

Details

Files

Statistics

from
to
Export
Download Full History
Formats
Format
BibTeX
MARCXML
TextMARC
MARC
DublinCore
EndNote
NLM
RefWorks
RIS