Machine learning is being deployed in a growing number of applications which demand real- time, accurate, and cost-efficient predictions under heavy query load. These applications employ a variety of machine learning frameworks and models, often composing several models within the same application. However, most machine learning frameworks and systems are optimized for model training and not deployment.
In this thesis, I discuss three prediction serving systems designed to meet the needs of modern interactive machine learning applications. The key idea in this work is to utilize a decoupled, layered design that interposes systems on top of training frameworks to build low-latency, scalable serving systems. Velox introduced this decoupled architecture to enable fast online learning and model personalization in response to feedback. Clipper generalized this system architecture to be framework-agnostic and introduced a set of optimizations to reduce and bound prediction latency and improve prediction throughput, accuracy, and robustness without modifying the underlying machine learning frameworks. And InferLine provisions and manages the individual stages of prediction pipelines to minimize cost while meeting end-to-end tail latency constraints.
Title
The Design and Implementation of Low-Latency Prediction Serving Systems
Published
2019-12-16
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
EECS-2019-171
Type
Text
Extent
102 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).