Large-scale data analytics frameworks are shifting towards shorter task durations and larger degrees of parallelism to provide low latency. However, scheduling highly parallel jobs that com- plete in hundreds of milliseconds poses a major challenge for cluster schedulers, which will need to place millions of tasks per second on appropriate nodes while offering millisecond-level la- tency and high availability. We demonstrate that a decentralized, randomized sampling approach provides near-optimal performance while avoiding the throughput and availability limitations of a centralized design. We implement and deploy our scheduler, Sparrow, on a real cluster and demon- strate that Sparrow performs within 14% of an ideal scheduler.
Title
Scalable Scheduling for Sub-Second Parallel Jobs
Published
2013-05-16
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
EECS-2013-79
Type
Text
Extent
30 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).