
A Causality Interface for Deadlock Analysis in
Dataflow

Ye Zhou
Edward A. Lee

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2006-51

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-51.html

May 12, 2006

Copyright © 2006, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

A Causality Interface for
Deadlock Analysis in Dataflow

Ye Zhou and Edward A. Lee
∗

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

Berkeley, CA 94720, USA

{zhouye, eal}@eecs.berkeley.edu

ABSTRACT
In this paper, we consider a concurrent model of computa-
tion called dataflow, where components (actors) communi-
cate via streams of data tokens. Dataflow semantics has
been adopted by experimental and production languages
used to design embedded systems. The execution of a data-
flow actor is enabled by the availability of its input data.
One important question is whether a dataflow model will
deadlock (i.e., actors cannot execute due to a data depen-
dency loop). Deadlock in many cases can be determined, al-
though it is generally not decidable. We develop a causality
interface for dataflow actors based on the general framework
we introduced in [1] and show how this causality information
can be algebraically composed so that composition of com-
ponents acquire causality interfaces that are inferred from
their components and the interconnections. We illustrate
the use of these causality interfaces to statically analyze for
deadlock.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques; F.3.1 [Logics and Meanings of Programs]: Spec-
ifying and Verifying and Reasoning about Programs; D.1.3
[Programming Techniques]: Concurrent Programming

General Terms
Design, Reliability, Theory, Verification

Keywords
∗This paper describes work that is part of the Ptolemy
project, which is supported by the National Science Foun-
dation (NSF award number CCR-00225610), and Chess (the
Center for Hybrid and Embedded Software Systems), which
receives support from NSF, the State of California Micro
Program, and the following companies: Agilent, DGIST,
General Motors, Hewlett Packard, Infineon, Microsoft, and
Toyota.

Actors, Behavioral types, Causality, Dataflow, Deadlock, In-
terfaces

1. INTRODUCTION
In this paper, we consider dataflow as a model of computa-
tion in the actor-oriented [2] sense, where “actors” (compo-
nents that are in charge of their own actions) communicate
by exchanging messages. In dataflow, the messages (sig-
nals) are streams of data tokens. Actors execute in response
to the availability of input data. Variants of dataflow in-
clude Kahn-MacQueen process networks [3], extension to
nondeterministic systems [4] and Dennis-style dataflow [5].
The dataflow model of computation has been used in indus-
trial practice, in tools such as SPW from the Alta Group
of Cadence, the DSP station from Mentor Graphics, and
LabVIEW from National Instruments, as well as in experi-
mental contexts, in frameworks such as Ptolemy developed
at Berkeley.

One important question is whether a dataflow network dead-
locks. Deadlock occurs in feedback loops where actors can-
not execute, waiting for input data from each other. Many
researchers have tackled this problem using different ap-
proaches. For example, Lee and Messerschmitt focus on
synchronous dataflow, which is a subset of dataflow mod-
els, and present an algorithm to determine deadlock [6].
Buck applies clustering techniques and state traversal analy-
sis to boolean dataflow [7]. Matthews uses a metric-space
approach to treat deadlock [8].

In this paper, we give an interface theory [9], similar in spirit
to resource interfaces [10] and behavioral type systems [11].
Our theory captures causality properties of actor-oriented
designs. Causality properties reflect in the interface the de-
pendence that particular outputs have on particular inputs.
The work here is closest in spirit to the component inter-
faces of Broy in [12], where causality properties of stream
functions are formalized. In this paper, we build a rather
specialized theory (of causality only) that is orthogonal to
other semantic properties.

Following [9] and common practice in object-oriented design,
an actor can have more than one interface. We consider ac-
tors with input and output ports, where each input port
receives zero or more tokens, and the actor reacts to these
tokens by producing tokens on the output ports. One inter-
face of the actor defines the number of ports, gives the ports

1

names or some other identity, and constrains the data types
of the tokens handled by the port [13]. Another interface of
the actor defines behavioral properties of the port, such as
whether it requires input tokens to be present in order to
react [11].

In this paper, we consider a particular behavioral interface
that we call a causality interface. A preliminary form of
causality interfaces is given in [1], where it is applied to
discrete-event models [14] and synchronous languages [15]
for causality loops. This paper refines the algebra for such
interfaces and focuses on dataflow and process networks
models.

2. ACTORS AND THEIR COMPOSITION
Dataflow actors communicate with each other via streams.
A stream is a potentially infinite sequence of distinct tokens.
We define a prefix order v on sequences, where s1 v s2 if s1

is a prefix of s2. For example, [x1, x2] v [x1, x2, x3]. Let S
denote the set of all sequences. (S,v) is a complete partial
order (CPO). The least element of S is the empty sequence,
denoted ⊥.

Actors receive and produce signals on ports. An actor a
with N ports is a subset of SN . A particular s ∈ SN is said
to satisfy the actor if s ∈ a. s is called a behavior of the
actor. Thus an actor is a set of possible behaviors. An actor
asserts the constraints on the signals at its ports.

A connector c between ports Pc is a particulary simple actor
where signals at each port p ∈ Pc are constrained to be
identical. The ports in Pc are said to be connected.

A set A of actors and a set C of connectors defines a compos-
ite actor. The composite actor is defined to be the intersec-
tion of all possible behaviors of the actors A and connectors
C [16].

In dataflow, ports are either inputs or outputs to an ac-
tor but not both. Consider an actor a ⊆ SN where I ⊆
{1, ..., N} denotes the indices of the input ports, and O ⊆
{1, ..., N} denotes the indices of the output ports. I ∪ O =
{1, ..., N} and I ∩ O = ∅. Given a signal tuple s ∈ a, we
define πI(s) to be the projection of s on a’s input ports, and
πO(s) on output ports. The actor is said to be functional if

∀ s, s′ ∈ a, πI(s) = πI(s
′) ⇒ πO(s) = πO(s′).

Such an actor can be viewed as a function from input signals
to output signals. Specifically, given a functional actor a
with |I| input ports and |O| output ports, we can define an
actor function with the form

Fa : S|I| → S|O|, (1)

where | · | denotes the size of a set.

When it creates no confusion, we make no distinction be-
tween the actor a (a set of behaviors) and the actor function
Fa.

An actor with no input ports (only output ports) is func-
tional if and only if its behavior set is a singleton set. That
is, it has only one behavior. An actor with no output ports
is always functional.

A composite actor is itself an actor. In addition to the set
P of ports contained by the composite actor a, the actor
may have a set of Q of external ports, where Q

T
P = ∅ (see

figure 1). Input ports in Q may be connected to any input
port in P that is not already connected. Output ports in
Q may be connected to any single output port in P . If the
composite actor has no (external) input ports, it is said to
be closed. Otherwise it is open.

A visual syntax for a simple three-actor composition is shown
in figure 1(a). Here, the actors are rendered as boxes, the
ports as triangles, and the connectors as wires between ports.
The ports pointing into the boxes are input ports and the
ports pointing out of the boxes are output ports. A textual
syntax for the same composition might associate a language
primitive or a user-defined module with each of the boxes
and a variable name with each of the wires.

The composition in figure 1(a) is closed. In figure 1(b), we
have added a level of hierarchy by creating an open com-
posite actor a with external ports {q1, q2, ..., q6}. In figure
1(c), the internal structure of the composite actor is hidden.
Using the techniques introduced in this paper, we are able
to do that without losing essential causality information of
composite actor a.

In fact, any network of actors can be converted to an equiv-
alent hierarchical network, where the composite actor in-
ternally has no directed cycles, like that in figure 1(c). A
constructive procedure that performs this conversion is easy
to develop. Just create one input port and one output port
for each signal in the original network. E.g., in figure 1(a),
the signal going from p5 to p2 induces ports q5 and q2 in
figure 1(b) and (c). Then connect the output port provid-
ing the signal value (p5 in this example) to the new output
port (q5), and connect the new input port (q2) to any input
ports that observe the signal (p2). This can be done for any
network, always resulting in a structure like that in figure
1(c).

It is easy to see that if actors a1, a2, and a3 in figure 1(b)
are functional, then the composite actor a in figure 1(c) is
functional. Let Fa denote the actor function for actor a.
Assuming the component actors are functional, it has the
form

Fa : S3 → S3.

The feedback connectors in figure 1(c) require the signals
at the input ports of a to be the same as the signals at its
outputs. Thus the behavior of the feedback composition in
figure 1(c) is s ∈ S3 that is a fixed point of Fa. That is,

Fa(s) = s.

A key question, of course, is whether such a fixed point exists
(does the composition have a behavior?) and whether it is
unique (is the composition determinate?). We define the
semantics of the diagram to be the least fixed point (least
in the prefix order), if it exists. The least fixed point is
assured of existing if Fa is monotonic (order preserving),
and a constructive procedure exists for finding that least
fixed point if Fa is also (Scott) continuous (in the prefix

2

Figure 1: A composition of three actors and its interpretation as a feedback system. P = {p1, p2, p3, p4, p5, p6} is the set

of ports contained by the composite actor a. Q = {q1, q2, q3, q4, q5, q6} is the set of external ports of a.

order) [17]. It is easy to show that if a1, a2, and a3 in figure
1(b) have continuous actor functions, then so does a in figure
1(c). Continuity is a property that composes easily.

However, even when a unique fixed point exists and can be
found, the result may not be desirable. Suppose for example
that in figure 1(c) Fa is the identity function. This function
is continuous, so under the prefix order, the least fixed point
exists and can be found constructively. In fact, the least
fixed point assigns to each port the empty signal. Thus,
deadlock manifests itself as a least fixed point of empty or
finite sequences. Specifically, we wish to ensure that for a
particular dataflow network of actors, if all sources of data
are unbounded (external inputs and actors with only output
ports can always continue to supply tokens), then all streams
in the network are unbounded. A dataflow network that
satisfies this requirement is said to be live.

Whether such a liveness condition exists may be harder to
determine than whether the composition yields a continuous
function. In fact, it can be shown that in general this ques-
tion is undecidable for dataflow models [18]. The causality
interfaces we define here provide necessary and sufficient
conditions for the deadlock condition. Due to the funda-
mental undecidability, our necessary and sufficient condi-
tions cannot always be statically checked. But we will show
that for many common situations, they are easily checked.

3. CAUSALITY INTERFACES
In this section, we give the definition of causality interfaces,
which is refined from [1].

A causality interface for an actor a with input ports Pi and
outports Po is a function

δ : Pi × Po → D, (2)

where D is a partially ordered set with two binary opera-
tions ⊗ and ⊕ that satisfy the axioms given below. The
elements of D are called dependencies, and δ(p1, p2) denotes
the dependency that port p2 has on p1.

First, we require that the operators ⊕ and ⊗ be associative,

∀ d1, d2, d3 ∈ D, (d1 ⊕ d2)⊕ d3 = d1 ⊕ (d2 ⊕ d3), (3)

∀ d1, d2, d3 ∈ D, (d1 ⊗ d2)⊗ d3 = d1 ⊗ (d2 ⊗ d3). (4)

Second, we require that ⊕ (but not ⊗) be commutative,

∀ d1, d2 ∈ D, d1 ⊕ d2 = d2 ⊕ d1, (5)

and idempotent,

∀ d ∈ D, d⊕ d = d. (6)

Third, we require distributivity as follows,

∀ d1, d2, d3 ∈ D, d1 ⊗ (d2 ⊕ d3) = (d1 ⊗ d2)⊕ (d1 ⊗ d3), (7)

∀ d1, d2, d3 ∈ D, (d2 ⊕ d3)⊗ d1 = (d2 ⊗ d1)⊕ (d3 ⊗ d1). (8)

In addition, we require an additive and a multiplicative iden-
tity, called 0 and 1, respectively that satisfy:

∃ 0 ∈ D such that ∀ d ∈ D, d⊕ 0 = d
∃ 1 ∈ D such that ∀ d ∈ D, d⊗ 1 = 1⊗ d = d
∀ d ∈ D, d⊗ 0 = 0.

The ordering relation ≤ on the set D is a partial order,
meaning, as usual,

∀ d ∈ D, d ≤ d
∀ d1, d2 ∈ D, d1 ≤ d2 and d2 ≤ d1 ⇒ d1 = d2

∀ d1, d2, d3 ∈ D, d1 ≤ d2 and d2 ≤ d3 ⇒ d1 ≤ d3.

Unless otherwise stated, we use d1 < d2 to mean d1 ≤ d2

and d1 6= d2.

Finally, a key axiom of D relates the operators and the order
as follows.

∀ d1, d2 ∈ D, d1 ⊕ d2 ≤ d1. (9)

Connectors (which are also actors) will always have causality
interface 1, and lack of dependency between ports will be
modeled with causality interface 0.

The boolean dependency set and the weighted dependency
set we introduced in [1] are two examples that satisfy the
above axioms.

4. CAUSALITY INTERFACES FOR
DATAFLOW MODELS

We define the dependency set D for dataflow models to be
a set of functions:

D = (N∞ → N∞),

3

where (X → Y) denotes the set of total functions with do-
main X and range contained by Y . N∞ = N ∪ {∞}, where
N = {0, 1, 2, · · · } is the natural numbers. With appropriate
choices for an order and ⊕ and ⊗ operators, this set forms
a dependency set.

We define the order relation such that for any d1, d2 ∈ D,
d1 ≤ d2 if ∀ n ∈ N∞, d1(n) ≤ d2(n). For two different
d1 and d2, d1 < d2 means ∀ n ∈ N∞, d1(n) < d2(n) or
d1(n) = d2(n) = ∞.

The ⊕ operation computes the greatest lower bound of two
elements in D. I.e., ∀ d1, d2 ∈ D, the function (d1 ⊕ d2) :
N∞ → N∞ is defined by

∀ n ∈ N∞, (d1 ⊕ d2)(n) = min{d1(n), d2(n)}.

The ⊗ operator is function composition. I.e., ∀ d1, d2 ∈ D,
the function (d1 ⊗ d2) : N∞ → N∞ is defined by

d1 ⊗ d2 = d2 ◦ d1

or

∀ n ∈ N∞, (d1 ⊗ d2)(n) = d2(d1(n)).

The additive identity 0 is the infinity function, d∞ : N∞ →
N∞, given by

∀ n ∈ N∞, d∞(n) = ∞.

The multiplicative identity 1 is the identity function, dI :
N∞ → N∞, given by

∀ n ∈ N∞, dI(n) = n.

With these definitions, the dependency set satisfies all of the
axioms described in Section 3.

Recall that in dataflow models, tokens at input ports trigger
tokens at output ports. For input port p and output port p′

of an actor a, δa(p, p′) = d is interpreted to mean that given
n tokens at port p, there will be d(n) tokens at port p′. That
is, given an input stream of length n, the output stream
has length (δa(p, p′))(n). Note that, in general, δa(p, p′)
may depend on the input tokens themselves. This fact is
the source of expressiveness that leads to undecidability of
liveness. However, as we will show, many situations prove
decidable.

A source actor has no input ports, so we define the causality
interface of a source actor to be a function that maps a
fictional absent input port and an output port po of the actor
to the infinity function. I.e.,

δ(ε, po) = d∞.

This assumes, of course, that the source actor is always able
to produce tokens.

A sink actor is one with no output ports. Similarly, we
define the causality interface of a sink actor to be a function
that maps an input port pi of the actor and a fictional absent
output port to the zero function. I.e.,

δ(pi, ε) = d0,

where d0(n) = 0,∀ n ∈ N∞.

The causality interface for a connector is simply the multi-
plicative identity 1 = dI .

For a dataflow network to be live, we require that all causal-
ity interfaces of actors be unbounded, unless the actor is a
sink actor. Intuitively, an actor with a bounded causal-
ity interface cannot produce any tokens beyond the bound,
causing starvation of input tokens of any downstream actors.

A (functional) actor a with input ports Pi is said to be
monotonic (or order preserving) if

∀ s1, s2 ∈ S|Pi|, s1 v s2 ⇒ Fa(s1) v Fa(s2),

where Fa is the actor function of a.

Intuitively, monotonicity says that if the input signal is ex-
tended with additional tokens appended to the end, the out-
put can only be changed by extending it with additional
tokens. I.e., giving additional inputs can only result in ad-
ditional outputs. Thus we have the following property:

Property 1. Let p be an input port and p′ be an out-
put port of a monotonic actor a. Then δa(p, p′) is non-
decreasing.

For the purpose of this paper, we assume all actors are
(Scott) continuous, a stronger property than monotonicity.
A chain in a CPO is a totally ordered subset of the CPO.
In a CPO, every chain C has a least upper bound, writtenW

C (this is what makes the CPO “complete”). An actor a

is said to be (Scott) continuous if for all chains C ⊆ S|Pi|,
the least upper bound

W
Fa(C) exists and

Fa(
_

C) =
_

Fa(C).

Here it is understood that Fa(C) = {Fa(s) | s ∈ C}.

Since the lengths of the streams in a chain C also form a
chain in N∞ (a CPO with ordinary order), it is easy to see
that the following property holds:

Property 2. Let p be an input port and p′ be an output
port of a (Scott) continuous actor a. Then δa(p, p′) is (Scott)
continuous.

Continuity implies monotonicity [17], so it follows that the
causality interfaces of a continuous dataflow actor are also
non-decreasing.

The following theorem will prove useful in this paper.

Theorem 1. If d : N∞ → N∞ is a continuous function,
then

1. d has a least fixed point n0, given by
V
{n ∈ N∞ | d(n) ≤

n}.

2. n0 = ∞ if and only if dI < d, where n0 is the least fixed
point of d and dI = 1 is the multiplicative identity.

4

Figure 2: A feedforward composition.

Proof. Part (1) comes directly from the Knaster-Tarski
fixed point theorem [17].

Part (2): If dI < d, then n0 =
V
{n ∈ N∞ | d(n) ≤ n} = ∞.

If dI ≮ d, then there is a smallest n ∈ N such that d(n) ≤ n.
Then n is the least fixed point of d and n is finite.

5. COMPOSITION OF CAUSALITY INTER-
FACES FOR DATAFLOW MODELS

Given a set A of actors, a set C of connectors, and the
causality interfaces for the actors and the connectors, we
can determine the causality interfaces of the composition
and whether the composition is live. To do this, we form
a dependency graph of ports, and observe that the paths
between ports traverse both actors and connectors. We will
first discuss feedforward systems and then deal with systems
with feedback loops.

5.1 Causality Interfaces for
Feedforward Compositions

A feedforward system does not have any cycles in its depen-
dency graph. It is easy to see that a feedforward composition
of live actors is always live. To determine the causality inter-
faces of a composite actor abstracting the feedforward com-
position, we use the ⊗ operator for series composition and
the ⊕ operator for parallel composition. For example, fig-
ure 2 shows a feedforward composition, which is abstracted
into a single actor b with external input port q1 and output
port q2. To determine the causality interface of actor b, we
need to consider all the paths from q1 to q2, and δb(q1, q2)
is given by

δb(q1, q2) = δc1(q1, p1)⊗ δa1(p1, p5)
⊗δc2(p5, p2)⊗ δa2(p2, p4)⊗ δc3(p4, q2),

where δa1 and δa2 are the causality interfaces for actors a1

and a2, respectively, and δc1, δc2, δc3 are the causality inter-
faces for connectors c1, c2, c3, respectively. Since connectors
have causality interface 1, the above equation simplifies to

δb(q1, q2) = δa1(p1, p5)⊗ δa2(p2, p4).

Figure 3 shows a slightly more complicated example, where
there are two parallel paths from port p5 to port p4. We get

δb(q1, q2) = δa1(p1, p5)⊗ [δa2(p2, p4)

⊕(δa3(p7, p6)⊗ δa2(p3, p4))], (10)

where we have omitted the causality interfaces for connec-
tors.

Figure 3: A feedforward composition with parallel

paths.

5.2 Causality Interfaces for
Feedback Compositions

The dependency graph of a feedback system contains cyclic
paths. Given a cyclic path c = (p1, p2, ..., pn, p1), where pi’s
(1 ≤ i ≤ n) are ports of the composition, we define the gain
of c to be

gc = δ(p1, p2)⊗ δ(p2, p3)⊗ ...⊗ δ(pn, p1).

Note that c′ = (pi, ..., pn, p1, ..., pi) is also a cyclic path, and
gc 6= gc′ in general. The ordering of ports of path c′ is only
a shifted version of that of c. We say that c and c′ are two
different paths of the same cycle.

A simple cyclic path is a cyclic path that does not include
other cyclic paths. A simple cycle is a cycle that does not
include other cycles.

We now begin by considering simple cases of feedback sys-
tems and build up to the general case. Consider the com-
position shown in figure 4, where actor a is a feedforward
composite actor. From section 5.1, we can determine its
causality interface and we know it is live if its component
actors are live.

The following three lemmas are useful. The first is an adap-
tation of lemma 8.10 in [19]:

Lemma 1. Consider two CPOs S1 and S2, and a contin-
uous function

Fa : S1 × S2 → S2.

For a given s1 ∈ S1, we define the function Fa(s1) : S2 → S2

such that

∀ s2 ∈ S2, (Fa(s1))(s2) = Fa(s1, s2).

Then for all s1 ∈ S1, Fa(s1) is continuous.

In the context of figure 4(a), this first lemma tells us that
if Fa is continuous, then given an input s1 ∈ S at port p1,
the function Fa(s1) from port p2 to port p3 is continuous.
Thus, for each s1, Fa(s1) has a unique least fixed point, and
that fixed point is

W
n∈N{(Fa(s1))

n(⊥)} [17].

The second lemma comes from [20]:

Lemma 2. Consider two CPOs S1 and S2, and a con-
tinuous function Fa : S1 × S2 → S2. Define a function

5

Figure 4: An open composition with feedback loops.

Fb : S1 → S2 such that

∀ s1 ∈ S1, Fb(s1) =
_
n∈N

{(Fa(s1))
n(⊥S2)},

where ⊥S2 is the least element of S2. Fb is continuous.

This second lemma tells us that under a least fixed point
semantics the composition in figure 4(b) defines a continuous
function Fb from port q1 to port q2.

We now want to find the causality interface for actor b. Let
|s| denote the length of the stream s ∈ S. Given input signal
s1 at port p1 and s2 at p2, where |s1| = n and |s2| = m,

|Fa(s1, s2)| = min{δa(p1, p3)(n), δa(p2, p3)(m)}.

For each n ∈ N∞, we define a function fa(n) : N∞ → N∞
such that

∀m ∈ N∞, (fa(n))(m) = min{δa(p1, p3)(n), δa(p2, p3)(m)}.

fa(n) is continuous and,

δb(q1, q2)(n) = |Fb(s1)| = |
W

n∈N{(Fa(s1))
n(⊥)}|

=
W

n∈N{|(Fa(s1))
n(⊥)|}

=
W

n∈N{(fa(n))n(0)}

I.e., δb(q1, q2)(n) is the least fixed point of fa(n).

The third lemma helps us to find the least fixed point of
fa(n):

Lemma 3. Consider a continuous function δ : N∞ → N∞
and a constant K ∈ N∞. We define a function g : N∞ →
N∞ such that

∀ m ∈ N∞, g(m) = min{K, δ(m)}.

Then g has a least fixed point given by m1 = min{K, m0},
where m0 is the least fixed point of δ.

Proof. Note that δ and g are continuous and therefore
non-decreasing, and ∀ m < m0, m < δ(m) (due to Theorem
1). Then

g(m1) = min{K, δ(min{K, m0})}
= min{K, δ(K), δ(m0)}
= min{K, δ(K), m0}.

1. If K < m0, then K < δ(K). Therefore, g(m1) = K =
m1.

2. If m0 ≤ K, then m0 = δ(m0) ≤ δ(K). Therefore,
g(m1) = m0 = m1.

Therefore m1 is a fixed point of g. Note that ∀ m < m1,
m < K and m < δ(m). Therefore,

m < min{K, δ(m)} = g(m).

Therefore m1 is the least fixed point of g.

Corollary 1. Given the composite actor b as shown in
figure 4(b),

1. The causality interface of b is given by

∀ n ∈ N∞, δb(q1, q2)(n) = min{δa(p1, p3)(n), m0}

where m0 is the least fixed point of δa(p2, p3).

2. actor b is live if and only if actor a is live and 1 <
δa(p2, p3), where 1 = dI is the multiplicative identity.

Proof. Part (1) comes directly by applying fa(n) to g
in Lemma 3.

Part (2): If actor a is live, then δa(p1, p3) is unbounded.
If 1 < δa(p2, p3), then m0 = ∞. Therefore δb(q1, q2) is
unbounded. Thus b is live.

On the other hand, if b is live, then δa(p1, p3) is unbounded
and m0 = ∞. This means 1 < δa(p2, p3), and actor a is
live.

Given the causality interface for actor b, we now form the
nested feedback composition of figure 4(c). We are assured
that since b is continuous, this has a unique least fixed point.
The composition will be live if and only if 1 < δb(q1, q2).

Working towards the structure of figure 1, we add an ad-
ditional output port to actor a in figure 5. We can easily
adapt Lemma 1, 2 and 3 to this situation. Nothing signifi-
cant changes. We continue to add ports to the actor a, each
time creating a nested composite. Since every network can
be put into the structure of figure 1(c), we can determine
from the causality interface of a, whether a composition is
live. Thus we have established the following theorem:

6

Figure 5: An open system with a feedback connection that has the structure of figure 1.

Theorem 2. A finite network of continuous dataflow ac-
tors is live if and only if for every cyclic path c in the de-
pendency graph, 1 < gc, where 1 = dI is the multiplicative
identity.

6. DISCUSSION
Compare the systems in figure 5(b) and (c). In (b), we de-
termine that the composite is live based only on δa(p2, p4).
But in (c), we see that there is implicitly another cyclic
path c = (p2, p3, p1, p4, p2). (We omit the external ports
q1 and q2 here.) Are we remiss in ignoring that (poten-
tial) cyclic path when determining whether the composite
in (b) is live? The answer is negative, as we will show in
section 9. The cyclic path c does not need to be checked if
c′ = (p1, p4, p2, p3, p1), which is only a shifted version of c,
is checked. c′ can be checked using the causality interface of
actor b, without knowing explicitly the causality interface of
actor a. Thus, our technique achieves a measure of modu-
larity, in that details of a composite system can be hidden;
it is only necessary to expose the causality interface of the
composite.

A second question that might arise concerns decidability of
deadlock. The above theorems give us necessary and suf-
ficient conditions for a dataflow system to be live. How-
ever, deadlock is generally undecidable for dataflow models.
These statements are not in conflict. Our necessary and
sufficient conditions may not be decidable. In particular,
the causality interfaces for some actors, e.g., boolean select
and boolean switch [7], are in fact dependent on the data
provided to them at the control port. They cannot be stat-
ically known by examining the syntactic specification of the
dataflow network unless the input stream at the control port
can be statically determined. Theorem 2 implies that if for
every cyclic path c, 1 < gc is decidable, then deadlock is de-
cidable. More precisely, if we can prove for every c, 1 < gc,
then the model is live. If we can prove there exists a cyclic
path c such that 1 ≮ gc, then there is at least one (local)
deadlock in the model. If we can prove neither of these, then
we can draw no conclusion about deadlock.

Certain special cases of the dataflow model of computation
make deadlock decidable. For example, in the synchronous
dataflow (SDF) model of computation [6], every actor ex-
ecutes as a sequence of firings, where each firing consumes
a fixed, specified number of tokens on each input port, and
produces a fixed, specified number of tokens on each output
port. In addition, an actor may produce a fixed, specified
number of tokens on an output port at initialization. Given

an SDF actor a with input port pi and output port po, the
causality interface function δa(pi, po) is given by

∀ n ∈ N∞, (δa(pi, po))(n) =

(
bn/Nc ·M + I, if n < ∞
∞, if n = ∞,

(11)
where N is the number of tokens consumed at pi in a firing,
M is the number of tokens produced at po, and I is the
number of initial tokens produced at po at initialization.
Using this, we get the following theorem.

Theorem 3. Deadlock is decidable for synchronous data-
flow models with a finite number of actors.

Proof. Since distributivity holds for the (⊕,⊗) algebra
on D, it is easy to see that the gain of any cyclic path can
be written in the form

g =
M

(
O

δa(pi, po)), (12)

where each δa(pi, po) is in the form of (11), and the ⊗ and
⊕ operators operate on a finite number of δ’s.

We first note that for each function δ in the form of (11),
the following property holds:

∀ k, r ∈ N, δ(kN + r) = δ(r) + kM, (13)

which means

δ(kN + r)− (kN + r) = δ(r)− r + k(M −N).

Therefore, 1 < δ if and only if N ≤ M and ∀ r ∈ {1, 2, ..., N−
1}, r < δ(r), which can be determined in finite time. Thus
1 < δ is decidable.

Now consider two causality interfaces δa and δb of some SDF
actors, and they satisfy

∀ k, r ∈ N, δa(kNa + r) = δa(r) + kMa

δb(kNb + r) = δb(r) + kMb

where we have omitted mention of the ports for notational
simplicity. A cascade of δa and δb would therefore satisfy

(δa ⊗ δb)(kNaNb + r) = (δa ⊗ δb)(r) + kMaMb,

which is also in the form of (13). We can continue to com-
pose any finite number of causality interfaces with the ⊗
operator to get an expression of the form (⊗δ), where each

7

δ is a causality interface in the form of (11), and (⊗δ) satis-
fies (13). Thus 1 < (⊗δ) is decidable.

Now consider the ⊕ operation on two functions δ1 and δ2

for which we know whether 1 < δ1 and 1 < δ2. Since ⊕
computes the greatest lower bound,

1 < (δ1 ⊕ δ2) ⇔ 1 < δ1 ∧ 1 < δ2.

Thus 1 < (δ1 ⊕ δ2) is decidable. This generalizes easily to
any expression of the form of (12) over a finite number of
actors.

In [6], it is shown that if a synchronous dataflow model is
consistent, then deadlock is decidable. In particular, this
is shown by following a scheduling procedure that provably
terminates. Our theory applies to both consistent and incon-
sistent SDF models, and hence is more general. Moreover,
it is more straightforward to check whether 1 < g than to
execute the scheduling procedure described in [6].

7. AN EXAMPLE
Consider the dataflow model in figure 6(a). Assume all the
ports produce and consume one token on each firing of the
corresponding actor, and that port p5 produces I ∈ N initial
tokens, and all other ports produce zero initial tokens.

First, we notice that there are two cyclic paths starting from
p1, namely: c1 = (p1, p5, p2, p4, p1), and c2 = (p1, p5, p7,
p6, p3, p4, p1), where

gc1 = δa1(p1, p5)⊗ δa2(p2, p4)
gc2 = δa1(p1, p5)⊗ δa3(p7, p6)⊗ δa2(p3, p4)

and we want to check whether 1 < gc1 and 1 < gc2 . (Below
we show that checking c1 and c2 is sufficient to conclude
liveness. Checks on cyclic paths starting from other ports
are unnecessary.)

A second way to view this model is to create a hierarchy, as
shown in figure 6(b), and there is only one cycle between q1
and q2. The causality interface of actor b is given in (10),
and we want to check whether 1 < δb(q1, q2). In fact, we find
that δb(q1, q2) = gc1 ⊕ gc2 . Therefore 1 < δb(q1, q2) ⇔ 1 <
gc1 ∧ 1 < gc2 . I.e., both approaches check for the same con-
dition. Our interface theory exposes the necessary causality
information for composite actors while other details can be
hidden.

Using the second approach we get:

δb(q1, q2) = δa1(p1, p5)⊗ [δa2(p2, p4)
⊕(δa3(p7, p6)⊗ δa2(p3, p4))]

= (dI + I)⊗ [dI ⊕ (dI ⊗ dI)]
= dI + I

If I = 0, then 1 = δb(q1, q2), and the model deadlocks. If
I > 0, then 1 < δb(q1, q2). The model is live.

This example also shows that our causality interfaces can
help in designing a system by properly allocating correct
number of initial tokens to prevent deadlock.

8. RELATIONSHIP TO PARTIAL METRICS
Matthews uses a metric-space approach to treat deadlock
[8]. He defines a partial metric, which is a distance function:

f : S × S → R0,

where S is the set of all sequences and R0 is the non-negative
real numbers. Given two sequences s1, s2 ∈ S,

f(s1, s2) = 2−n,

where n is the length of the longest common prefix of s1 and
s2 (if the two sequences are infinite and identical, f(s1, s2) =
0). The pair (S, f) is a complete partial metric space.

We first consider a simple scenario of a continuous dataflow
actor a with one input port pi and one output port po and
a feedback connection from po to pi. The actor function
is Fa and the causality interface is δa. According to The-
orem 4.1 in [8], this feedback system is deadlock free if Fa

is a contraction map in this complete partial metric space,
meaning

∃ c ∈ R0, 0 ≤ c < 1, such that
∀ s1, s2 ∈ S, f(Fa(s1), Fa(s2)) ≤ cf(s1, s2).

Theorem 4. Let a be a continuous dataflow actor with
one input port pi and one output port po. The actor function
of a is Fa. Then 1 < δa(pi, po) ⇔ Fa is a contraction map
in the Matthews partial metric space.

Proof. Since there is only one relevant causality inter-
face, we abbreviate δa(pi, po) by δa (without showing the
dependency on the ports). We begin by showing the for-
ward implication.

Given s1, s2 ∈ S, let s be their longest common prefix, and
let n = |s| be its length. Then |Fa(s)| = δa(n) ≥ n + 1.
By monotonicity, Fa(s) is a prefix of Fa(s1) and Fa(s2).
Therefore,

f(Fa(s1), Fa(s2)) ≤ 2−δa(n) ≤ 2−(n+1) =
1

2
· f(s1, s2),

so Fa is a contraction map.

We next show the backward implication. Consider two sig-
nals s1 and s2 ∈ S, where |s1| = n < ∞ and s1 is a strict
prefix of s2. Therefore, we have,

f(s1, s2) = 2−n,

f(Fa(s1), Fa(s2)) = 2−δa(n).

If Fa is a contraction map, then,

2−δa(n) < 2−n

Since we can arbitrarily choose s1 (as long as |s1| is finite),
it follows that ∀ n ∈ N, n < δa(n) ≤ δa(∞). This concludes
that 1 < δa.

In Theorem 5.1 in [8], Matthews gives a sufficient condition
for liveness for compositions with more than one feedback
loop. We can similarly prove that this sufficient condition
is equivalent to the condition in Theorem 2 of this paper.
Our Theorem 2 shows that it is also a necessary condition
for liveness.

8

Figure 6: A dataflow model with a feedback loop.

9. COMPUTATION
It is stated in Theorem 2 that a dataflow model is live if and
only if for every cyclic path c, 1 < gc. We now ask a more
practical question. Do we need to verify 1 < gc for every
cyclic path c?

Consider a non-simple cyclic path c = (p1, ..., pi, q1, ..., qm,
pi, ..., pn, p1). Therefore c1 = (p1, ..., pi, pi+1, ..., pn, p1) and
c2 = (pi, q1, ..., qm, pi) are two cyclic paths.

Let d1 = δ(p1, p2)⊗ ...⊗ δ(pi−1, pi), d2 = δ(pi, pi+1)⊗ ...⊗
δ(pn, p1). Then,

gc1 = d1 ⊗ d2

gc = d1 ⊗ gc2 ⊗ d2.

If 1 < gc1 and 1 < gc2 , then, 1 < gc1 = d1 ⊗ d2 < gc.
I.e., checking gc1 and gc2 is sufficient. If c1 or c2 are non-
simple cyclic paths, we can further decompose them into
simple cyclic paths. Thus checking only simple cyclic paths
is sufficient.

Now we consider two cyclic paths c1 = (p1, p2, ..., pn, p1)
and c2 = (pi, ..., pn, p1, ...pi) of the same cycle. Let d1 =
δ(p1, p2)⊗ ...⊗ δ(pi−1, pi), d2 = δ(pi, pi+1)⊗ ...⊗ δ(pn, p1).
d1 and d2 are continuous, and,

gc1 = d1 ⊗ d2

gc2 = d2 ⊗ d1

Since commutativity does not hold for the ⊗ operator, gc1 6=
gc2 in general. However, we have the following Lemma:

Lemma 4. Let δ1, δ2 ∈ (N∞ → N∞) be two continu-
ous functions, and δ1, δ2 are unbounded. Then 1 < δ1 ⊗
δ2 ⇔ 1 < δ2 ⊗ δ1.

Proof. If 1 < δ1 ⊗ δ2, then

∀ n ∈ N, n < δ2(δ1(n)) (14)

Suppose, contrary to this lemma, that 1 6< δ2 ⊗ δ1, which
implies ∃ n0 ∈ N s.t. δ1(δ2(n0)) ≤ n0. Since δ2 is non-
decreasing (due to Property 1),

δ2(δ1(δ2(n0)) ≤ δ2(n0) (15)

If δ2(n0) < ∞, then (15) contradicts (14). If δ2(n0) = ∞,
then δ1(∞) ≤ n0. This contradicts with the fact that δ1 is
unbounded. Therefore 1 < δ2 ⊗ δ1.

Thus, it is sufficient to compute the gain of one cyclic path
for each simple cycle to check liveness for a continuous data-
flow network.

10. CONCLUSION
We have given an interface theory that abstractly repre-
sents causality of dataflow actors and that easily composes
to get causality interfaces of composite actors. We illustrate
the use of such interface information to analyze liveness in
dataflow networks. We show that liveness is decidable for
synchronous dataflow (whether consistent or not). We also
show that the causality analysis only needs to be performed
for one cyclic path of each simple cycle.

11. REFERENCES
[1] Lee, E.A., Zheng, H., Zhou, Y.: Causality interfaces

and compositional causality analysis. In: Foundations
of Interface Technologies (FIT), Satellite to
CONCUR, San Francisco, CA (2005)

[2] Lee, E.A.: Model-driven development - from
object-oriented design to actor-oriented design. In:
Workshop on Software Engineering for Embedded
Systems: From Requirements to Implementation
(a.k.a. The Monterey Workshop), Chicago (2003)

[3] Kahn, G., MacQueen, D.B.: Coroutines and networks
of parallel processes. In Gilchrist, B., ed.: Information
Processing, North-Holland Publishing Co. (1977)

[4] de Kock, E.A., Essink, G., Smits, W.J.M., van der
Wolf, P., Brunel, J.Y., Kruijtzer, W., Lieverse, P.,
Vissers, K.A.: YAPI: Application modeling for signal
processing systems. In: 37th Design Automation
Conference (DAC’00), Los Angeles, CA (2000)
402–405

[5] Dennis, J.B.: First version data flow procedure
language. Technical Report MAC TM61, MIT
Laboratory for Computer Science (1974)

[6] Lee, E.A., Messerschmitt, D.G.: Synchronous data
flow. Proceedings of the IEEE (1987)

[7] Buck, J.T.: Scheduling Dynamic Dataflow Graphs
with Bounded Memory Using the Token Flow Model.
Ph.d. thesis, University of California, Berkeley (1993)

[8] Matthews, S.G.: An extensional treatment of lazy
data flow deadlock. Theoretical Computer Science 151
(1995) 195–205

9

[9] deAlfaro, L., Henzinger, T.A.: Interface theories for
component-based design. In: First International
Workshop on Embedded Software (EMSOFT).
Volume LNCS 2211., Lake Tahoe, CA,
Springer-Verlag (2001) 148–165

[10] Chakrabarti, A., Alfaro, L.d., Henzinger, T.A.:
Resource interfaces. In Alur, R., Lee, I., eds.:
EMSOFT. Volume LNCS 2855., Philadelphia, PA,
Springer (2003) 117–133

[11] Lee, E.A., Xiong, Y.: A behavioral type system and
its application in Ptolemy II. Formal Aspects of
Computing Journal 16 (2004) 210 – 237

[12] Broy, M.: Advanced component interface specification.
In: Proceedings of the International Workshop on
Theory and Practice of Parallel Programming
(TPPP), London, UK, Springer-Verlag (1994) 369–392

[13] Xiong, Y.: An extensible type system for
component-based design. Ph.D. Thesis Technical
Memorandum UCB/ERL M02/13, University of
California, Berkeley, CA 94720 (2002)

[14] Cassandras, C.G.: Discrete Event Systems, Modeling
and Performance Analysis. Irwin (1993)

[15] Benveniste, A., Berry, G.: The synchronous approach
to reactive and real-time systems. Proceedings of the
IEEE 79 (1991) 1270–1282

[16] Lee, E.A., Sangiovanni-Vincentelli, A.: A framework
for comparing models of computation. IEEE
Transactions on CAD 17 (1998)

[17] Davey, B.A., Priestly, H.A.: Introduction to Lattices
and Order. Cambridge University Press (1990)

[18] Lee, E.A., Parks, T.M.: Dataflow process networks.
Proceedings of the IEEE 83 (1995) 773–801

[19] Winskel, G.: The Formal Semantics of Programming
Languages. MIT Press, Cambridge, MA, USA (1993)

[20] Liu, X.: Semantic foundation of the tagged signal
model. Ph.D. Thesis Technical Memorandum
UCB/EECS-2005-31, EECS Department, University
of California (2005)

10

