Maintaining an in-focus image over long time scales is an essential and non-trivial task for a variety of microscopy applications. Here, we describe a fast and robust auto-focusing method that is compatible with a wide range of existing microscopes. It requires only the addition of one or a few off-axis illumination sources (e.g. LEDs), and can predict the focus correction from a single image with this illumination. We designed a neural network architecture, the fully connected Fourier neural network (FCFNN), that exploits an understanding of the physics of the illumination in order to make accurate predictions with 2-3 orders of magnitude fewer learned parameters and less memory usage than existing state-of-the-art architectures, allowing it to be trained without any specialized hardware. We provide an open-source implementation of our method, in order to enable fast and inexpensive autofocus compatible with a variety of microscopes.
Title
Deep learning for single-shot autofocus microscopy
Published
2019-12-01
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
EECS-2019-161
Type
Text
Extent
10 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).