Tolerance to communication latency and inexpensive synchronization are critical for general-purpose computing on large multiprocessors. Fast dynamic scheduling is required for powerful non-strict parallel languages. However, machines that support rapid switching between multiple execution threads remain a design challenge. This paper explores how multithreaded execution can be addressed as a compilation problem, to achieve switching rates approaching what hardware mechanisms might provide.
Compiler-controlled multithreading is examined through compilation of a lenient parallel language, Id90, for a threaded abstract machine, TAM. A key feature of TAM is that synchronization is explicit and occurs only at the start of a thread, so that a simple cost model can be applied. A scheduling hierarchy allows the compiler to schedule logically related threads closely together in time and to use registers across threads. Remote communication is via message sends and split-phase memory accesses. Messages and memory replies are received by compiler-generated message handlers which rapidly integrate these events with thread scheduling.
To compile Id90 for TAM, we employ a new parallel intermediate form, dual-graphs, with distinct control and data arcs. This provides a clean framework for partitioning the program into threads, scheduling threads, and managing registers under asynchronous execution. The compilation process is described and preliminary measurements of its effectiveness are discussed. Dynamic execution measurements are obtained via a second compilation step, which translates TAM into native code for existing machines with instrumentation incorporated. These measurements show that the cost of compiler-controlled multithreading is within a small factor of the cost of control flow in sequential languages.
Title
Compiler-Controlled Multithreading for Lenient Parallel Languages
Published
1991-07-30
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
CSD-91-640
Type
Text
Extent
21 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).