Hybrid human/machine database and search systems promise to greatly expand the usefulness of query processing by incorporating human knowledge and experience via "crowdsourcing" into existing systems for data gathering and other tasks. Of course, such systems raise many implementation questions. For example, how can we reason about query result quality in a hybrid system? How can we best combine the benefits of machine computation and human computation? In this thesis we describe how we attacked these challenges by developing statistical tools that enable users and systems developers to reason about query completeness in hybrid database systems, as well as combining human and automated processing in search engines. We present evaluations of these techniques using experiments run on a popular crowdsourcing platform, Amazon's Mechanical Turk.
Title
Collecting Data With the Crowd
Published
2014-12-04
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
EECS-2014-208
Type
Text
Extent
126 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).