In recent years, growing data volumes and more sophisticated computational procedures have greatly increased the demand for computational power. Machine learning and artificial intelligence applications, for example, are notorious for their computational requirements. At the same time, Moores law is ending and processor speeds are stalling. As a result, distributed computing has become ubiquitous. While the cloud makes distributed hardware infrastructure widely accessible and therefore offers the potential of horizontal scale, developing these distributed algorithms and applications remains surprisingly hard. This is due to the inherent complexity of concurrent algorithms, the engineering challenges that arise when communicating between many machines, the requirements like fault tolerance and straggler mitigation that arise at large scale and the lack of a general-purpose distributed execution engine that can support a wide variety of applications.
In this thesis, we study the requirements for a general-purpose distributed computation model and present a solution that is easy to use yet expressive and resilient to faults. At its core our model takes familiar concepts from serial programming, namely functions and classes, and generalizes them to the distributed world, therefore unifying stateless and stateful distributed computation. This model not only supports many machine learning workloads like training or serving, but is also a good t for cross-cutting machine learning applications like reinforcement learning and data processing applications like streaming or graph processing. We implement this computational model as an open-source system called Ray, which matches or exceeds the performance of specialized systems in many application domains, while also offering horizontally scalability and strong fault tolerance properties.
Title
Ray: A Distributed Execution Engine for the Machine Learning Ecosystem
Published
2019-08-16
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
EECS-2019-124
Type
Text
Extent
104 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).