Given the overwhelming quantities of data generated every day, there is a pressing need for tools that can extract valuable and timely information. Vast reams of text data are now published daily, containing information of interest to those in social science, marketing, finance, and public policy, to name a few. Consider the case of the micro-blogging website Twitter, which in May 2013 was estimated to contain 58 million messages per day: in a single day, Twitter generates a greater volume of words than the Encyclopedia Brittanica. The magnitude of the data being analyzed, even over short time-spans, is out of reach of unassisted human comprehension.
This thesis explores scalable computational methodologies that can assist human analysts and researchers in understanding very large text corpora. Existing methods for sparse and interpretable text classification, regression, and topic modeling, such as the Lasso, Sparse PCA, and probabilistic Latent Semantic Indexing, provide the foundation for this work. While these methods are either linear algebraic or probabilistic in nature, this thesis contributes a hybrid approach wherein simple probability models provide dramatic dimensionality reduction to linear algebraic problems, resulting in computationally efficient solutions suitable for real-time human interaction.
Specifically, minimizing the probability of large deviations of a linear regression model while assuming a k-class probabilistic text model yields a k-dimensional optimization problem, where k can be much smaller than either the number of documents or features. Further, a simple non-negativity constraint on the problem yields a sparse result without the need of an l_1 regularization. The problem is also considered and analyzed in the case of uncertainty in the model parameters. Towards the problem of estimating such probabilistic text models, a fast implementation of Sparse Principal Component Analysis is investigated and compared with Latent Dirichlet Allocation. Methods of fitting topic models to a dataset are discussed. Specific examples on a variety of text datasets are provided to demonstrate the efficacy of the proposed methods.
Title
Fast and Effective Approximations for Summarization and Categorization of Very Large Text Corpora
Published
2015-12-17
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
EECS-2015-251
Type
Text
Extent
95 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).