Recent research has shown there are two types of uncertainty that can be expressed in first-order logic -- propositional and statistical uncertainty -- and that both types can be represented in terms of probability spaces. However, these efforts have fallen short of providing a general account of how to design probability measures for these spaces; as a result, we lack a crucial component of any system that reasons under these types of uncertainty. In this paper, we describe an automatic procedure for defining such measures in terms of a probabilistic knowledge base. In particular, we employ the principle of maximum entropy to select measures that are consistent with our knowledge and that make the fewest assumptions in doing so. This approach yields models of first-order uncertainty that are principled, intuitive, and economical in their representation.
Title
Maximum Entropy Probabilistic Logic
Published
1905-06-24
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
CSD-01-1161
Type
Text
Extent
6 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).