Quantum computing has shown great potential for being able to solve certain problems which are intractable on classical machines. Peter Shor devised a means to factor large number in polynomial time on a quantum machine, a feat which would compromise modern public key cryptosystems. Further, simulation of quantum mechanical systems, which is exponential in both space and time on a classical machine, is expected to be far faster on a quantum machine. In this work, we present mechanisms for producing a laid out and scheduled quantum datapath tailored to a particular target circuit.
We identify two key pieces of support infrastructure in a quantum datapath. First, some quantum operations require the use of helper qubits known as ancilla qubits which are not part of the target circuit specification. We introduce and design efficient ancilla factories to use as basic functional units in our datapath layouts. Second, we provide designs for the basic components that allow the construction of a teleportation network, which is necessary for long distance communication on a quantum datapath.
We utilize our basic component designs in proposing a malleable architectural specification which we call Qalypso. The benefit of the flexibility of Qalypso lies in the ability to fine tune the various components of the datapath to suit the needs of a given quantum circuit. Ancilla bandwidth, network resources and interfacing of support infrastructure to data may all be tailored to fit circuit characteristics.
To complete the process of laying out and scheduling a quantum circuit, we device heuristics for mapping the circuit onto Qalypso while simultaneously finalizing the datapath characteristics as appropriate for the circuit. Our methods produce a final realizable datapath layout and associated scheduling, both optimized for the circuit in question.
We have implemented these heuristics in a quantum CAD flow toolset currently tailored to designing architectures in ion trap technology. We conclude this thesis by demonstrating the application of these heuristics through the automated toolset to construct a datapath and schedule optimized for Shor's factorization algorithm.
Title
An Investigation into the Realities of a Quantum Datapath
Published
2010-05-11
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
EECS-2010-60
Type
Text
Extent
134 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).