We develop and demonstrate an object recognition system capable of accurately detecting, localizing, and recovering the kinematic configuration of textured animals in real images. We build a deformation model of shape automatically from videos of animals and an appearance model of texture from a labeled collection of animal images, and combine the two models automatically. We develop a simple texture descriptor that outperforms the state of the art. We test our animal models on two datasets; images taken by professional photographers from the Corel collection, and assorted images from the web returned by Google. We demonstrate quite good performance on both datasets. Comparing our results with simple baselines, we show that for the Google set, we can recognize objects from a collection demonstrably hard for object recognition.
Title
Detecting, Localizing, and Recovering Kinematics of Textured Animals
Published
2004-11-01
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
CSD-04-1361
Type
Text
Extent
11 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).