When a malleable job is submitted to a space-sharing parallel computer, it must choose often whether to begin execution on a small, available cluster, or wait in queue for more processors to become available. To make this decision, it must predict how long it will have to wait for the larger cluster. We propose statistical techniques for predicting these queue times, and develop an allocation strategy that uses these predictions. We present a workload model based on the environment we have observed at the San Diego Supercomputer Center, and use this model to drive simulations of various allocation strategies. We conclude that prediction-based allocation not only improves the average turnaround time for the jobs; it also improves the utilization of the system as a whole.
Title
Using Queue Time Predictions for Processor Allocation
Published
1997-01-01
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
CSD-97-929
Type
Text
Extent
20 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).