Simultaneous Localization and Mapping is a fundamental problem in mobile robotics: while a robot navigates in an unknown environment, it must incrementally build a map of its surroundings and localize itself within that map. Traditional approaches to the problem are based upon Kalman filters, but suffer from complexity issues: first, the belief state grows quadratically in the size of the map; and second, the filtering operation can take time quadratic in the size of the map. I present a linear-space filter that maintains a tractable approximation of the filtered belief state as a thin junction tree. The junction tree grows under measurement and motion updates and is periodically "thinned" to remain tractable. The time complexity of the filter operation is linear in the size of the map. I also present simple enhancements that permit constant-time approximate filtering.
Title
Thin Junction Tree Filters for Simultaneous Localization and Mapping
Published
2002-09-01
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
CSD-02-1198
Type
Text
Extent
13 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).