We ask whether strictly causal components form well defined systems when arranged in feedback configurations. The standard interpretation for such configurations induces a fixed-point constraint on the function modelling the component involved. We define strictly causal functions formally, and show that the corresponding fixed-point problem does not always have a well defined solution. We examine the relationship between these functions and the functions that are strictly contracting with respect to a generalized distance function on tagged signals, and argue that these strictly contracting functions are actually the functions that one ought to be interested in. We prove a constructive fixed-point theorem for these functions, introduce a corresponding induction principle, and study the related convergence process.
Title
On Fixed Points of Strictly Causal Functions
Published
2013-04-08
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
EECS-2013-27
Type
Text
Extent
66 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).