Fast computer simulation is an essential tool in the design of large parallel computers. Our Fast Accurate Simulation Tool, FAST, is able to accurately simulate large shared memory multiprocessors and their execution of parallel applications at simulation speeds that are one to two orders of magnitude faster than previous comparable simulators. The key ideas involve execution driven simulation techniques that modify the object code of the application program being studied. This produces an augmented version of the code that is directly executed and performs much of the work of the simulation. We extend the previous work by introducing several new uses of code augmentation.
In this paper we summarize the tradeoffs made in the designs of this and previous simulators. In previous simulators, these tradeoffs have often led to sacrificing accuracy for faster simulation. However by careful selection of techniques and when to apply them, we have built a simulator that is both faster and more accurate than previous simulation systems. The improved accuracy comes from applying code augmentation techniques at a uniform low level and from having such fast context switching that accuracy/performance tradeoffs become unnecessary.
Our simulator has a modular design and has been configured in many ways. It has been used to conduct numerous experiments on multithreaded machine behavior, application behavior, cache behavior, compiler optimization, and traffic patterns. Because of its high performance, we have been able to perform simulations of larger machines than would otherwise have been feasible.
Title
Fast Accurate Simulation of Large Shared Memory Multiprocessors (revised version)
Published
1993-06-01
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
CSD-93-752
Type
Text
Extent
16 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).