Convolutional neural networks have advanced visual perception significantly in recent years. Two major ingredients that enable such a success are the composition of simple modules into a complex network and the end to end optimization. However, such success has not yet revolutionized robotics as much as vision, even if robotics suffer from similar problems as traditional computer vision, i.e. imperfectness of the manual pipeline design of the system.
This thesis investigates using end-to-end learning for the autonomous driving system, a concrete robotic application. End to end learning can produce reasonable driving behaviors, even in the complex urban driving scenarios. Representation learning in end-to-end driving models is crucial, and auxiliary vision tasks such as semantic segmentation can help to form a more informative driving representation especially when training data is limited. Naive convolutional neural networks are usually only capable of doing reactive control and can not involve complex reasoning in a particular scenario. This thesis also studies how to handle scene conditioned driving behavior, which goes beyond the capability of reactive control. Alongside the end-to-end structure, learning methods also play a critical role. Imitation learning methods will acquire meaningful behaviors but usually, the robot can not master the skill. Reinforcement learning, on the contrary, either barely learns anything if the environment is too complex, or it can master the skill otherwise. To get the best of both worlds, this thesis proposes an algorithmically unified method to learn from both demonstration data and the environment.
Title
End to End Learning in Autonomous Driving Systems
Published
2020-01-08
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
EECS-2020-5
Type
Text
Extent
96 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).