Current I/O benchmarks suffer from several chronic problems: they quickly become obsolete, they do not stress the I/O system, and they do not help in understanding I/O system performance. We propose a new approach to I/O performance analysis. First, we propose a self-scaling benchmark that dynamically adjusts aspects of its workload according to the performance characteristic of the system being measured. By doing so, it automatically scales across current and future systems. The evaluation aids in understanding system performance by reporting how performance varies according to each of five workload parameters. Second, we propose predicted performance, a technique for using the results from the self-scaling evaluation to quickly estimate the performance for workloads that have not been measured. We show that this technique yields reasonably accurate performance estimates and argue that this method gives a far more accurate comparative performance evaluation than traditional single point benchmarks. We apply our new evaluation technique by measuring a SPARCstation 1+ with one SCSI disk, an HP 730 with one SCSI-II disk, a Sprite LFS DECstation 5000/200 with a four-disk disk array, a Convex C240 minisupercomputer with a four disk array, and a Solbourne SE/905 fileserver with a four disk array.




Download Full History