In this paper, we describe our approach to the optimization of query execution plans in XPRS, a multi-user parallel database machine based on a shared-memory multiprocessor and a disk array. The main difficulties in this optimization problem are the compile-time unknown parameters such as available buffer size and number of free processors, and the enormous search space of possible parallel plans. We deal with these problems with a novel two phase optimization strategy which dramatically reduces the search space and allows run time parameters without significantly compromising plan optimality. In this paper we present our two phase strategy and give experimental evidence from XPRS benchmarks that indicate that it almost always produces optimal plans.
Details
Title
Optimization of Parallel Query Execution Plans in XPRS
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).