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1. INTRODUCTION.

Parametric optimization is a powerful tool for the selection of
favorable values for design variables. In linear control system
design, parametric optimization has been used for at least twenty
years: since the introduction of the linear-quadratic regulator
problem. Although linear quadratic regulator theory was derived in
the context of optimal control theory rather than mathematical
programming theory, it is nevertheless true that the optimal gain
matrix for the linear-quadratic regulator problem is a solution to
an unconstrained parametric optimization problem of the form

min f(K) (1.1)

where f{K) is the largest eigenvalue of a symmetric matrix of the
form

•0

fi*p[t(A+BK)]T(Q+KTRlQexplt(A+BK)]dt (1.2)
o

with Q symmetric and positive semi-definite and R symmetric and
positive definite.

In keeping with the state of the art in constrained optimization
of the sixties (see e.g., [Ath.l]), the cost function f(K), in the linear
quadratic regulator problem, expresses a penalty function
approach to the satisfaction of performance requirements. Over
the last eight years a much more powerful approach has become
possible with the development of semi-infinite optimization algo
rithms for engineering design (see e.g., [Gon.l, Pol.l, Pol.2, Pol.3]).
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The major advantage of semi-infinite optimization over the penalty
function approach implicit in LQR theory, is that it accepts as con
straints exact bounds on time and frequency responses over time
and frequency intervals. These bounds take on the form of infinite

systems of inequalities which are parametrized by time or fre

quency, that the finite number of designable compensator parame
ters must satisfy (see e.g. [Pol.1]). Such inequalities are often
refered to as semi-infinite inequalities. Clearly, semi-infinite

optimization opens up totally new possibilities in control system
design. This is particularly so since the introduction of
nondifferentiable optimization theory has led to algorithms that
can solve not only constraints on time and frequency responses

which are (pointwise) differentiable, but also on eigenvalues of sys
tem matrices and singular values of transfer function matrices,
which are not differentiable everywhere (see [Gon.l, Pol.2, Pol.3]).
This paper summarizes our work on the use of semi-infinite optimi
zation in control system design.

2. CONTROL SYSTEM DESIGN VIEWED AS AN OPTIMIZATION

PROBLEM

Whenever design specifications include envelope constraints on
time and frequency responses, control system design problems
transcribe into semi-infinite optimization problems with, possibly,
a dummy cost. These problems have the form

min{/(x) I g*(z) * 0, ; =1.2 m; ^(x.Ofc) * 0. k = 1.2.....1, V a* e At\{Z. l)

where x e WP is the design vector (designable compensator param

eters); f': WP -»IRt g*r: JR" -»M', <pk: lRn*JRPk •* IR are locally Iipschitz
continuous and the sets A* c BPk are compact. Most often, pk =l so
that the At are intervals (of time or frequency). Only in the case of
parametric dynamic model uncertainty does one need to introduce
sets At of higher dimension.

A simple example will illustrate the genesis of forms such as
(2.1) in control system design. Consider the control system in Fig.
1, for which it is necessary to design a compensator C. The dynam
ics of this system are given by

u J J



yc yp.
P -yVy yi+sJ y

Fig. I
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ip = Apzp + BpUp
Vp ~ CpZp + DpUp

Zq = i4^ZC + B&Lq

Uc = Q?zc + Dcuc

uP=yc

uc - ~Vp —d+r

(2.2a)

(2.2b)

(2.2c)

where (2.2a) specifies the plant dynamics, (2.2b) specifies the com
pensator dynamics and (2.2c) specifies the system interconnection.
The designer chooses the dimension of the compensator state vec
tor zc and has to compute the compensator matrices Ac, Bc, Cc, A?,
whose elements eventually form the components of the design vec

tor x. In order to reduce the dimension of the design vector x, the

designer may specify the system matrix Ac in block diagonal form

Ac = diagOAic. A2c, . • • .4bC \an-i. • • • >^n) (2.3a)

where the A* are real (some may be frozen at zero for integral
action), while

AjC = 0 1
a0j (2.3b)

Some structural simplification of the B matrix is also possible.

Now consider typical constraints,

(i) Time Domain: Given step inputs r<(*) = (o,o,...,i,o...o) (with the 1 in
the i place), we require that the corresponding step responses
iri(i(x,rj) remain within the envelopes shown in Fig. 2. This leads to
the two semi-infinite constraints

yi{x.t.77) - b$(t) * 0 V t € [0,T] (2.4a)

-V^.t.r,) +b?(t) -so Vie[0,r] (2.4b)

We note that when i*j (2.4a,b) express limitations on the permissi
ble interaction.

(ii) S-plane: The system matrix of the closed loop system has the
form

[Ap-Bp(I+Dc£p)~lDcCp -Bp(I+DcDp)-lCc
A^ ~\BG(I+BpDcyiCp Ac-Bc(I+DpDcYxDpCc (2.5)

We may require that all the eigenvalues of this matrix lie in a cone



Fig. 2
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in C_. Denoting the eigenvalues of A{x) by \*[A(z)], we are lead to
the system of inequalities

lw[\1[A(x)]] +£Re\1[A(x)]] +.(•*•(> for; = 1,2 N (2.6)

where £. t > 0. Note that in (2.6) we are exploiting the fact that com
plex eigenvalues must come in conjugate pairs. Alternatively, the
same result could have been specified in semi-infinite inequality
form via the modified Nyquist criterion described in [Pol. 4].
(iii) Frequency Domain: Assuming that there is some unstructured
uncertainty in the plant model, so that (2.2a) represents only the
structured part PQl while the actual plant has a transfer function

matrix of the form P(s) = Pq(s)(i + L(s))t with P0(s) the transfer func

tion matrix of (2.2a) and L(s) a perturbation known only to the
extent that

aa[L(ja)]*l>(v) VwssO (2.7)

where o[] denotes the largest singular value. In that case (see
[Che. 1]), for the closed loop system to be stable, we require, in
addition to (2.6), that

aLH&(*J*)] " tW* ° V °*° (28)
where Hjr = (/ +PoC)P0C. Clearly, (2.8) is a semi-infinite inequality.

Finally, we may elect to minimize the influence of the distur

bance over a critical frequency range, which leads to the definition

of the cost function (see [Doy. 1])

where Hfr =(/ + P0C)~l.

We see that this simple design example has the form of the

problem (2.1). Note that in view of this example, one may not
change the hypothesis that the functions in (2.1) are only locally
lipschitz continuous to the assumption that they are continuously
differentiable. It should be pointed out that a number of the func

tions in the constraints are locally Lipschitz continuous only in the

subset of the parameter space where the closed loop system is
stable. Because of this, the algorithms discussed in the next sec
tion have to be slightly modified so as to preserve stability
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throughout the entire optimization.

3. SEMI-INFINITE OPTIMIZATION ALGORITHMS FOR CONTROL

SYSTEM DESIGN

In the preceeding section, we saw that control system design

problems reduce to optimization problems with constraints of the
form max ^*(ar ,1/^)^0, where the ys represent either time or fre-

quency. To simplify notation, we concentrate on the simplest prob

lem in this class:

min{/(x)|^(ar.y)^0 Vy e Y\ (3.1)

where f:IRn •+IR is continuously differentiable and <p:IRnxIR -»IR is
locally Lipschitz continuous and Y c m is a compact interval.

Our favorite algorithms for solving (3.1) are semi-infinite phase
I-phase II methods [Pol.5, Gon.l, Pol.2, Pol.3] obtained by extension
of simple methods of feasible directions (see [Pol.7]). These
methods compute a feasible point (i.e., a design satisfying
specifications) very rapidly. After that, they reduce the cost
without violation of specifications. Since to a large measure,
design consists of simply satisfying specifications, the advantage of
the phase I-phase II methods is clear.

It is easiest to understand the principles governing these phase
I-phase II algorithms by considering at first simpler problems such
as

mmlfix)\g*(x) * QJ e mj (3.2)

where f:IRn-+IR%gf:IRn'*IR,j em are continuously differentiable
andm k (1,2,....m}. For any a: e JR" let

1>{x) k maxgHx) (3.3a)
J € A.

*.(*) ^ max(0^(a:)J (3.3b)

and for any s ^ o, and x e M71 let

/«(*) 4 y em |ft(ar) -/'(*) s* ej (3.3c)

Next we recall that the directional derivatives of /(•) and f+() at x
in the direction /i*0, are given by df {x-ji) = <f {x).h> while
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df+(x;h) =^nyg {<ty'(:c)a7i>( Oj when if/(x) =0, df+(x;/i) = max <Vg1(x),h>
when f (x) > o, and df+(x;/i) = o when f (x) < o. In order to avoid zig
zagging, it is common to introduce an e-directional derivative of
f+(x), defined, for s ^ 0 by

de^{x:h) k
max <Vgi(x),h> iff(x)^-e

" 0 iff(x)<-e (3-4)

Note that for any x such that f(x)^o, cty(x;/i)«s dcf+(x;/i) for all
ft e iffn and every e ^ o. A phase I-phase II search direction can now
be defined by

*•(*) - argmin {Jflfrf +max \df(x;h) -9tK*)+. def(x;A)jj (3.5)

where 7 > 0. Let tfc(x) denote the value of the quadratic program
(3.5). Clearly, if tfe(x) < o, then a) if f+(x) = 0, then he(x) is a feasible
usable direction (can decrease cost without constraint violation);
b) if ^+(x) > 0, we get a direction of reduction of constraint viola
tion, mitigated by the need to reduce the cost /(x) as f(x)

approaches zero. Finally, it is necessary to reduce the anti-
zigzagging precautions as a solution point is approached. This can
be done by defining, with 1/ e (0,1),

E k io.l.i/,1/2.!/3, •'• • ( (3.6a)

and

e(x) k maxfe e £|tfc(x)=s-ej (3.6b)

Putting together the elements we have, we obtain
Algorithm 3.1:

Parameters: a,/J,7 e (0,1), 7 > 0.

Data: x0 e BZ*.

Step 0: Set i = 0.

Step 1: Compute sfa) and the search direction fy k h£^(xi).
Step 2: Compute the step size \%

\ a arginax(0fc Iffo + Pkhi) -#=*) =* -fiasMl '^^(xi) > 0.

\ = argmaxtf* |/(x< + p*f\) - /fo) * -/^asfo); f(xt +^)\) ^ 0J (3.7)
keJNj.
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if^(xt)<sO

Step 3: Update: set ztH = xt + Vii, replace i by i + 1 and go to step 1.
•

Referring to [Pol.5] we find the following result.
Theorem 3.1: Suppose that Q£ co|V0*(x)Jie/o(X) for all x e ]Rn such
that f{x) ;> o. If x is an accumulation point of (x^o constructed by
Algorithm 3.1, then it(x) jso and i^(x) = 0 (i.e., x satisfies the F. John
condition of optimality (see [Clar. 1])). •

In order to extend Algorithm 3.1 to nondifferentiable problems,
we begin by refining the e-search direction finding problem (3.5) by
introducing an additional real variable h° so that we move to IR71*1
and introduce the vector h = (h°ji), with h eiRn, and we replace
7^(x)+ by the computationally more desirable factor Vr#(x)+. The
new e-search direction finding problem becomes

ht(x) = (hS(x)At(x)) k argminya|A|2 (3.8a)

+ maxjd/(x:/i) - V7*+(*)fc°.rfc^x;/i)j

and by making use of. the Von Neumann minmax theorem, we
obtain from (3.8a) that

£«(x) * argminJMfl? e G{*{x)\ (3.8b)

where

«•♦<•>»-tauj (3.9)

It is easy to show that replacing fc«(x), as computed by (3.5) by hB(x)
as computed by (3.8b) and replacing tfe(x) computed as the value of
(3.5) by tf,(x) computed as the value of (3.8b), in Algorithm 3.1,
does not affect the truth of Theorem 3.1. We therefore assume

from now on that h9(x) and #«(«) in Algorithm 3.1 are computed
using (a8b). First we extend Algorithm 3.1 to the case of problem
(3.1) where V,^(xty) exists and is continuous (cf. [Gon. 1]). For this
case, for any «eF and e & o, we define

?,(*) i|i/e Y\f+(x) - v(x,y) * ej (3.10a)

where, now, ^(x) k max<p(x,y) and f+(x) = max {0,^(x)j, as before, and
i6'
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Ye(z) k \y e Yt{x)\y is alocal maximizer of p(x,-) in Y\ (3.10b)
Engineering considerations allow us to assume that Ye(x) is a finite
set (see [Pol.l]). To extend Algorithm 3.1 to the case of Problem
(3.1) in question, we define

G(*(x) k co
f \

0
Vz9>(x,y)

K i

t

I V/(x) J
V£YK[z)

(3.11)

Substituting from (3.11) into (3.8b), we get a finite quadratic, pro
gram in baricentric co-ordinates, to solve in computing he(x).
Referring to [Gon. 1], we see that the conclusions of Theorem 3.1
remain valid for this case, with the modification that the optimality
condition now satisfied is a generalization of the F. John condition
(see [Pol.7, Cla.1 ]).

Next, we turn to the special case where <p{x,y) = (a[H{x,jy)])z with

ff the maximum singular value of an mxm. transfer function matrix

whose coefficients are differentiable in x (see [Pol.3]). We define
the symmetric positive semi-definite matrix

Q(xty) k H(x*jy)*H(xjy), with * denoting the complex conjugate
transpose. Noting that in (3.11) co\Vx<p(x,y)lyEYeiz) is a superset of
the Clarke generalized gradient, ds<p(x,y) = co \Vxtp(x,y)lyeYe(x), [Cla.
1], we proceed by analogy again.

Let <p(xty) k ^(x.yJ^X^x.y)^ • •• feXro(x,y) be the eigenvalues of
Q(x,y), let i*(x) k maxp(x,y), as before, and let ^(x) be defined as in

y er

(3.10b). Next, we define

Fe(*.y) k
fcclPVlf =<^(x,y)z, dM*fr Ue(x.y)z>, ||z|| =1) if #*>-*
= 0 otherwise ^ " '

where Ut(x,y) is a unitary matrix whose columns span the eigen-

space corresponding to the eigenvalues X*(x,y), k = 1,2 ks(x,y)
such that Xl(*.y) - X*(x,y) £ e. Then we define

U J v ' * *'* yere(«)
(3.13)

Substituting from (3.13) into (3.8b) we obtain a formula for

"4-2
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computing a search direction. This defines Algorithm 3.1 for con
straints, on (a[H(x,jy)]f. The formulas for constraints oil a[H(x,jy)]
are similar, but no longer symmetrical (i.e., one uses matrices of
singular vectors Ve(x,y) and Uc(x,y) in (3.12)).

Again, referring to [Pol.3, Pol.8], we see that the conclusions of
Theorem 3.1 remain valid with the modification that x satisfies an

appropriate optimality condition in terms of generalized gradients
(see [Cla. 1]). However, the computation of the search direction
Ke(x) is no longer a finite quadratic program. Hence ht(x) has to be
computed by means of some nearest point algorithm such as the
ones described in [Pol.3, Pol.7].

4. SOFTWARE FOR OPTIMIZATION-BASED CONTROL SYSTEM
DESIGN

A software system, DELIGHT.MIMO (see [Pol.6]), implementing
an optimization-based control system design methodology is
currently being developed jointly by research teams at the Univer
sity of California, Berkeley, and Imperial College, London. Some
specific contributions to DELIGHT.MIMO are also being made at
other institutions as well (see acknowledgement at the end of this
paper).

DELIGHT.MIMO is a member of a family of optimization-based
CAD packages currently being implemented in the DELIGHT system
[Nye.l, Nye.2]. Hence a description of DELIGHT.MIMO must begin
with a brief description of DELIGHT. DELIGHT can be thought of as a
highly portable operating system for a FORTRAN or C machine. As
can be expected from an operating system, it provides a certain
number of commonly found features such as a text editor, a read
and write files command, an ability to install and execute FORTRAN
and C programs, a help command, a history command, a repeat
command, hard interrupts, etc.

In addition, DELIGHT provides a number of rather special
features. The most important of these are the following.

1) Color graphics for interaction with data and programs. The
graphics provide a number of low level commands, such as
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viewport, window, vector, move, cursor and text. These are used

when display improvisation is necessary. In addition there are also
a number of high level commands of the form plot data according
to the options specified, which can be used to produce various
orthodox type plots.

2) High level language, RATTLE, for the programming of optimiza
tion algorithms as well as information display options. RATTLE
requires about 1/10 of the number of program lines compared to
FORTRAN, but it executes considerably slower than FORTRAN.
Because of this, in design packages a mixture of RATTLE, and FOR
TRAN code is always used.

RATTLE compiles incrementally, it has binary matrix operation
capability, it uses defines for command simplification and macros
for producing simple RATTLE calls to complex FORTRAN programs
(e.g. linprog x = argmtai\<ctz>\Az = 0. Bz ^ 0, z &0)J. It is easy to use
RATTLE to construct code for conversational data entry.

3) Soft interrupts for program debugging and temporary algorithm
modification. Unlike hard interrupts which suspend a program the
instant the break key is depressed, soft interrupts suspend a pro
gram only at designated break points in the program. When either
a hard or a soft interrupt is executed, it is possible to enter
suspended subprocedures and display and modify both local and
global variables. After an interrupt the user may start up a totally
unrelated computation or resume execution of the suspended pro
gram. To return to a suspended program after an unrelated side
computation, the user executes the reset (a given number of inter
rupt levels) command.

4) A modular, RATTLE code, optimization algorithm library is
being assembled. To use this library, the user assembles an algo
rithm from optional blocks, such as step size and direction finding
procedures, via a menu. The problem to be solved must be
described by means of several files containing either dimensional

information or RATTLE code for: the cost function, ordinary
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inequality constraints, functional inequality constraints, and gra
dients of the appropriate functions. The optimization problem and
algorithm are linked by means of the solve command, e.g., solve
pid using polakjwardi, when neither the problem pid nor algorithm
polak-wardi has been compiled, or solve pid (or solve using
polakjwardi) when the algorithm (problem) has been compiled ear
lier. Algorithms can be executed a desired number of iterations by

means of the run k command, or they can be executed atomically,

step by step, by means of the step k command. When execution of

an optimization program is interrupted by means of a soft or hard

interrupt, the user may adjust algorithm parameters, completely
replace the algorithm, modify the problem description files, display
variable values or plot response graphs.

DELIGHT.MIMO adds to the basic DELIGHT system a data base
for control system interconnection description, programs for con
trol system time and frequency response simulation, a symbolic
differentiator for obtaining derivatives of these responses with
respect to design parameters, interactive programs for initial
design generation, an interactive program which assists the user in
forming the RATTLE problem description files from design
specifications, as required by the optimization algorithm library
format, and both alpha-numeric and graphical means for entering
the control system configuration. The optimization algorithm
currently used for control system design is the Polak-Wardi method
described in [Pol.3]; it has the form of the last algorithm described
in Section 3.

5. THE DATA-BASE

The DELIGHT.MIMO data-base allows a system to be represented
as an interconnection of subsystems. The subsystems may be
either symbolic or state space representations. When the subsys
tems are represented symbolically, their names and interconnec
tion data are stored in a link table. For the system in Fig. 3, where
the block R generates the external system input, the link table
consists of two blocks, as shown below:



yc ? up
• »

yP 3 y
•—-*

Fig- 3
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Subsystem "From" Node "To" Node Sign

P 2 3 +

C 1 2 +

I 3 1 -

Signal Generator "To" Node

R 1

The link table can be constructed either alpha-numerically via the
terminal keyboard or by means of the graphical block diagram edi
tor.

When the subsystems are represented in state space form, as

Izi^AiZi + BiUi

they define (assuming there are N subsystems) an assembly of sub
systems S of the form

z = Az + Bu

y = Cz + Da

where A=diag(AltA2t...AN). B =dwg(BltBz%...BN), C=diag(CltCz CN),
D = dang(Di,DZt...%DN). The interconnections between the subsystems
are expressed algebraically:

u-Ey + Jv (5.3)

where r is a vector of external inputs and E and J are matrices
whose elements are zeros and ones. It should be clear that once

the dimensions of the inputs and outputs are defined, the matrices
E and / can be constructed from the data in the link tabled

The matrices 4, Bit Q, Du specifying the subsystems may be
given either in numerical form or in parametric form. When given

(5.2)
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in parametric form, their elements must be multinomials in the

elements of the design parameter vector x. A symbolic
differentiator is available for computing their derivatives with
respect to the parameters.

The interconnection equation (5.3) can be eliminated by means
of the link command which produces a reduced description of the
form

fz^AaZ+Ber
5 [y =C0z +Der W'4)

where Ac = A+B[I-EDYlECt BQ = B[I-EDYlJ, CQ = C+DlI-EDYlEC, and
DG = D[I-ED]~lJt in terms of the matrices in (5.2). The link com
mand can only be executed when specific values have been
assigned to the design parameters.

In addition to the link command, three other commands are

used in conjunction with the data-base. The first is the command

which enables the user to load into the data-base numerical or

parametrized descriptions of subsystems. The second is the

replace command which associates subsystems in the data base for
symbolically defined subsystems in the link table. The third is the

transfer command, which can be used to transfer parametrized

compensator descriptions and their initial values from a design ini
tialization program.

6. COMPUTATION OF SYSTEM RESPONSES AND THEIR DERIVA

TIVES

Since the closed loop system (5.4) always has distinct eigen
values (at least with probability 1), the computation of responses
can be considerably simplified by diagonalization (more robust
techniques, based on Schur decomposition, are also being contem
plated). Thus, rewriting (5.2) with the design parameters made
explicit, we get

z(t,x)=Ac(x)z(t,x) + BG(x)r(t) (6.1a)

y(t,x) = Cc(x)z(ttx) +Dc(x)r(t) (6.1b)

We begin with the time responses to inputs r(t) which are
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polynomials in t. With W(x) a matrix of eigenvectors of A{x), we
obtain,

t

z(t,x) = *(«)•*«* W(x)~lx(Q) +fw(x)e^x^^W(x)-lr(s)ds (6.2)
o

The output y(t,x) is then computed according to (6.1b). Because
the input r(t) is a polynomial, the integral in (6.2) can be evaluated
analytically (not numerically).

Next, the symbolic differentiator produces formulas for the

derivatives of the components of the matrices 4c. BG, Q., DG with

respect to the components of the design parameter vector x.
Numerical values for the derivatives are obtained by substituting
current parameter values. We note that the derivatives with

respect to x of z(tjc) and y(t,x) in (6.1) satisfy

(d/dt)(dz(t,x)/dx) =Ac(x)(dz(t,x)/dx) (6.3a)

+ (dAo(x)/dx)z(t,x) + (dBG(x)/dx)r(t)

dy(t.x)/dx = CG(x)(dz(t,x)/dx) + (dCG(x)/dx)z(t1x) + (dDG(x)/ dx)r (£$6.3b)

The diagonalization matrix W(x) can be used again to produce fairly
simple formulas for the derivatives (dz(t,x)/dx) and (dy(t,x)/dx).
Numerical substitution into these formulas yields efficient deriva
tive evaluations.

Next we turn to the frequency response of the interconnected
system. The input-output transfer function of the interconnected
system is given by

G(jw.x) = Q(ar)|>W - A,(*)]-^-(«) + A(*) (6.4a)

Since the derivative of G with respect to x is not a matrix, it is easi
est to obtain componentwise expressions for it, viz.,

dG(jw,x)/dx =dCHxydx^wI-Acix)]-1 BG(x) +DG(x) (6.4b)

+ Q.(x)[JvjI -M*)Yl(d4:(x)/dx)[jwI -AO*)]"1

+ q,(x)l>>/ -AQ(*)Y'l&Bc(*)/a*) + (dDG(x)/dx)

Assuming that the time response derivatives are computed first,
the only major computation left in the evaluation of the frequency
responses and their derivatives as specified by (6.4a), (6.4b) is the

U 0 '-
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evaluation of the matrix [jwi-Ac (xJ]-1." Since a diagonalization for
Ac (x) is already available, this computation can be considerably
simplified by making use of the formula

\JwI -A:(a:)]-1 = W(x){jwl -A(x)]"lW(x) (6.5)

7. DESIGN INITIALIZATION TECHNIQUES

Design via optimization in not a totally automatic process. The
designer is not only required to transcribe design specifications
into semi-infinite inequalities, he or she is also required to decide
on an initial compensator configuration as well as to produce a set
of initial values for the compensator. This is a creative process
which is very designer dependent. To facilitate the design initializa
tion task, the DELIGHT.MIMO system will incorporate software
implementing some of the more popular techniques, for example,
such as those described in [Des.l, Doy.l, Mac.l, Moo.l, Ros.l, Saf.l,
Saf.2, Ste. 1]. At the present time, there is software in
DELIGHT.MIMO enabling design of compensators via LQG techniques

as well as some model reduction algorithms. In the simplest case,

these replace the observer dynamics with its DC gain matrix. It
should be noted that in order to introduce into the design integra

tors for the elimination of steady state errors, a certain amount of

ingenuity must be exercised in using LQG techniques. For example,
consider the case in Fig.4. For the purpose of designing a state
feedback matrix K, the external input r must be neglected, while
the plant input is used as the feedback channel. Thus, suppose that
the plant has dynamics given by

zp = Apzp + Bpup (7. l)

yp = Cpzp

Next, the integrator of the compensating block has dynamics

zc =uc (7.2)

yc = 2c

and the interconnection is specified by

uc = -up . (7.3)

K'3



' t~ «c J>«-Zc Kc *0' Bp *>, y.

Fig. 4
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Thus the assembly satisfies the state equation

tfP (7.4)of

Zp

*c

Ap o
-C> 0

Bp
0

LQR techniques can now be used to compute a state feedback
matrix K = [KP \Kc] and the feedback law then becomes

up = Kpzp + Kczc (7.5)

Since the state of the integrator block is available, an observer is
needed only for estimating the plant state in this scheme.

8. CONCLUSION

We have seen that semi-infinite optimization is opening new
possibilities in control system design. The numerical aspects of
optimization-based control system design are still in an experimen
tal stage, but with time, they should become part of standard
design tools.
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