In this note we obtain communication cost lower and upper bounds on the algorithms for LU and QR given in (Demmel, Dumitriu, and Holtz 2007). The algorithms there use fast, stable matrix multiplication as a subroutine and are shown to be as stable and as computationally efficient as the matrix multiplication subroutine. We show here that they are also as communication-efficient (in the sequential, two-level memory model) as the matrix multiplication algorithm. The analysis for LU and QR extends to all the algorithms in (Demmel, Dumitriu, and Holtz 2007). Further, we prove that in the case of using Strassen-like matrix multiplication, these algorithms are communication optimal.
Details
Title
Sequential Communication Bounds for Fast Linear Algebra
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).