We consider two problems in the design and operation of energy-efficient buildings. The first is the prediction of energy consumption of a building from that of similar buildings in its geographical neighborhood. The second problem concerns the localization of faults in building sub-systems with a focus on faults that lead to anomalous energy consumption. For both problems, we propose algorithmic techniques based on machine learning to address them. Simulation results using EnergyPlus show the promise of the proposed methods.
Title
Algorithms for Green Buildings: Learning-Based Techniques for Energy Prediction and Fault Diagnosis
Published
2009-10-15
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
EECS-2009-138
Type
Text
Extent
14 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).