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Abstract

Viswanath and Anantharam ([15]) characterize the sum capacity of multi
access vector channels. For given number of users, received powers, spreading
gain and noise covariance matrix in a code-division multiple-access (CDMA)
system, [15] presents a combinatorial algorithm to generate a set of signature
sequences that achieves the maximum sum capacity. These sets also minimize
a performance measme called total square correlation (TSC).

Ulukus and Yates ([10]) propose an iterative algorithm suitable for dis
tributed implementation: at each step one signature sequence is replaced by
its linear minimum mean square error (MMSE) filter. This algorithm results
in a decrease of TSC at each step. The MMSE iteration has fixed points not
only at the optimal configurations which attain the global minimum TSC but
also at other configurations which are suboptimal. [10] claims that simulations
show that when starting with random sequences, the algorithm converges to
optimum sets of sequences, but gives no formal proof.

We show that the TSC function has no local minima, in the sense that given
any suboptimal set of sequences, there exist arbitrarily close sets with lower
TSC. Therefore, only the optimal sets are stable fixed points of the MMSE
iteration. We define a noisy version of the MMSE iteration as follows: after
replacing all the signature sequences one at a time by their linear MMSE filter,
we add a bounded random noise to all the sequences. Using our observation
about the TSC function, we can prove that if we choose the bound on the noise
adequately, making it decrease to zero, the noisy MMSE iteration converges
to the set of optimal configurations with probability one for any initial set of
sequences.

*This research is supported by EPRI/DOD Complex Interactive Networks under contract num
ber EPRI-W08333-04, NSF ANI 9872764, ECS 9873086 and IIS 9941569



1 Introduction and previous work

We consider the uplink of a symbol-synchronous CDMA system. An important
performance mesisure of such system is the sum capacity, the maximum sum of rates
of the users at which reliable communication can take place. If we fix the processing
gain, number of users, and received user powers, we can regard the sum capacity as
a function of the signature sequences sissigned to the users. We will refer to such an
assignment as a "configuration" of signature sequences. A signature sequence will
be modeled as a unit-norm real vector of dimension equal to the spreading gain.

The capacity region of a symbol-synchronous CDMA channel was first obtained
in [11]. Later [7] characterized the maximum sum capacity of a CDMA channel
with white noise and equal user received powers. In [14] the case of different user
received powers was solved using majorization theory. [15] also considers the case of
asymmetric received powers with colored noise, and gives a recursive algorithm to
construct an optimal configuration of signature sequences.

Another performance measure of the CDMA channel is the total square correla
tion (TSC). An iterative procedure called MMSE iteration, in which at each step
one signature sequence is modified in a way such that TSC is non-increasing, was
proposed in [9,10]. Another iterative procedure with the same property is proposed
in [6]. These algorithms are suitable for distributed implementation. The main idea
is that the receiver for some user would periodically decide on an update for the sig
nature sequence of that user and communicate it to the user through some feedback
channel. The user transmitter would then switch to the new signature sequence.
When these algorithms are applied, TSC is non-increasing, but there is no guarantee
that the TSC will converge to its minimum possible value. Nevertheless, simulations
suggest that when the initial signature sequences are chosen at random, the iteration
converges to the minimum of TSC. A modification of the algorithm of [6] is pro
posed in [5] in order to guarantee convergence to the optimum TSC value. However,
the modified algorithm has increased complexity and is not suitable for distributed
implementation.

We will define a modified version of the MMSE iteration adding noise and prove
almost sure convergence of the TSC to the global minimum. A short version of the
results herein was presented in [1].

2 Outline

The rest of this report is organized as follows. In section 3 we present the CDMA
channel model used. Section 4 obtains the linear MMSE filter. In section 5 we define

the majorization partial order on R" and state some results that will be used later.
In section 6 the two performance measures used, sum capacity and TSC, are defined
and basic properties are observed. Section 7 presents the MMSE iteration. The
fixed configurations of this iteration are characterized, and we prove that the MMSE
iteration asymptotically approaches the set of fixed configurations. In section 8 we
state the recursive algorithm of [15] which obtains the maximum sum capacity and a



configuration of signature sequences attaining it. We give a proofof the optimality
of the algorithm which is different from the one in [15] and is useful later. In the
process, we prove using results of section 6, that the optimal configurations that
maximize sum capacity are the same that minimize TSC. In section 9 we observe
and prove that TSC has no minima other than the globalminima. Motivated by this
result, in section 10 we define a modified version of the MMSE update adding noise.
We prove that if the noise bound is chosen adequately, the noisy MMSE iteration
converges to the optimum TSC almost surely regardless of the initial configuration.

3 Model

Consider a symbol-synchronous CDMA system with K users. Let T be the duration
of the symbol interval and let Sk : [0, T] R represent the signature waveform
assigned to user A;, assumed unit-norm in L^[0, T], i.e.

T
2

I (Sk(t)) dt = l

The received signal at the base station in one symbol interval can then be expressed
as

K

2/W = ^V^^kSk{t) + z(t) , t € [0,T] (1)
ifc=i

Here pk is the power received from user k. The information transmitted by user
k is modeled by the random variable Xk having zero mean and unit variance, and
independent ofthe information transmitted byother users. The noise z{t) is assumed
a zero-mean Gaussian process independent of the user symbols Xi,.. .jX^.

Let the processing gain be N. The signature waveforms are then constrained to
be of the form

N

(^) ~ ^ ^Sk,n'̂ n (^)
n=l

where {ipi(t),... ,^7v(t)} is an orthonormal set in I/^[0,T], and as Sk(t) is unit norm
12n=i 4,n = 1- If we write

Vn = f y{t)'il^n{t)dt
Jo

Zn = f Z{t)lpn{t)dt
Jo

we have
K

Vn —^ ^y/Pk^k^kfTi "b Zn
k=l



Hence writing Sk = [ Sk,i ... Sfc.n ]^,y=[yi ••• yN and z= [ zi ... zn f
we obtain ^

K

y-^ V^^kSk + (2)
k=l

Here Sk is a unit-norm (i.e. s^Sk = 1) AT-dimensional column vector corresponding
to the signature sequence of user k .

Ifwe write 5 = [ Si ... sk ], D = diag(pi,... ,pk) and x = [ a;i ... xk ]
equation (2) can be rewritten as

y= SD^x + z (3)

Because of our assumption on the noise, 2 is a Gaussian distributed zero-mean
N-dimensional column vector independent of x. We will denote the covariance of
z as Elzz"^] = W, a, K XK symmetric positive definite matrix. Usually the noise
process z(t) is assumed white. In that case, W is a multiple of the identity matrix
and y is easily shown to be a sufficient statistic for estimating x. Note that if the
noise is not white, then not only the different components of z, but also the vectors
z corresponding to different symbol intervals will be correlated. Moreover, in this
case y is not a sufficient statistic. Nevertheless, we will just consider the model (3)
with an arbitrary symmetric positive definite noise covariance matrix W, and to
compute the sum capacity, the noise vector z will be assumed uncorrelated across
different symbol intervals. The solution of this case of colored noise may provide
insight for the consideration of a system with multiple base stations, where users
communicating with one base station could be modeled as noise at the other base
station.

In the sequel we assume iV, K, pk (k e {1,..., iiT}) and W are given and fixed.
Thus a configuration is determined by the signatures matrix S € S where

5={[s, ... SK ] :Sfc€S''-Wfc€{l,...,Ar}} (4)

with S'^"' = {s € R" ; ||s|| = 1} the unit-sphere in R".

4 MMSE linezir filter

A linear filtering of the received signal is represented by an iV-dimensional column
vector Vj and has output v^y. The MMSE linear filter for user k, which we will
denote Vk, is defined as the linear filter that minimizes the mean squared difference
between the information transmitted by user k (x^) and the output of the filter. Let
us write MSE;b(u) = E[{v'̂ y —XkY]- Then

Vk = arg min MSEifc(?;)

^Hopefully the abuse of notation of representing with the same symbol the functions of time and
the corresponding column vectors will not lead to confusion.



Now

MSEk(v) = v^Elyy^jv - 2v^E[xky] + E[x^]

Using (3), E[xa;^] = I and the independence of x and 2 we get

Eb/] = SD^E[xx'̂ ]Dis'̂ + SDiElxz'̂ ] + E[zx'̂ ]D^SE[xz'̂ ] + E[zz'̂ ]
= SDS'^ + W

and

E[xky] = SD^Elxkx]

= SDhk
= \/PkSk

where Ck is the fc-th canonical unit-norm vector in . Therefore

MSEfc(u) = v^{SDS'̂ + W)v - 2y/^v^Sk + 1

We see that MSEfc(u) is a convex function of u, and to compute Vk we can differentiate
the above expression with respect to v and equate the gradient to zero, to obtain

2{SDS'̂ + W)vk - 2y/^Sk = 0

Solving for Vk:

Vk = V^iSDS^ + wy^Sk (5)
Given S and A; € {1,..., we will write Dk = diag(pi,... ,pk-uPk+u •••>P/r)

and 5jb = [ Si ... Sjfe_i Sk+i ... sk ]-
Another expression for Vk can be obtained from (5) using the known formula ^

(A + BC)-^ = A'^ - A-^B(I -f- CA-^B)-'̂ CA-^

which holds for matrices A, B, C of suitable dimensions whenever A and A H- BC are
nonsingular. Taking A = SkDkS^ -hW, B = pkSk and C = sj^ we obtain

_ r- p , in-i + W)-'pkSksl{SkDkSf[ + W)->(SDS +W) - {SkDkS, +ly) l+p,sl{SkDk^ +W)-^Sk

Hence from (5) we get

Another important property of the filter Vk is that it maximizes the output signal-
to-interference ratio (SIR) of user k over all linear receivers ([12]). To see this, note

^This expression can be verified directlymultiplying the right hand side by A+ BC and simpli
fying.



that the output offilter v is J2k=i \/Pk^kV^Sk + u^z. Hence

<5TR - E[(< v,^XkSk >)']
El(< v,y-^XkSk>f]

Pk(v'''sk)^

Pkv'̂ 'skslv
v'̂ {SkDkSl + W)v

Let V= (SkDk^ + W)Jv. Then

PkV^{SkDkSj[ + WyhksliSkDkSf^ + W)-iv
SIRfc(u) =

v'^v

Pk{v'̂ {SkDkSl +W)-isk)
~ iW

Using Cauchy-Schwartz inequality,

SlKk(v) < PksliSkDkSk + Wy^Sk

with equality ifand only ifu = a{SkDkSl + W)~^Sk^ i.e. v= oc[SkDkSl + W)~^5ifc
for some a 6 R

5 Majorization

In this section we define the majorization partial order on E". This order makes
precise the notion that the components of a vector are "less spread out" or "more
nearly equal" than those of another.

Given a € E", the components of a in decreasing order, called the order statistics
of a, will be denoted a(i],..., a[„]. In other words, (a[i],..., a[„]) is the permutation
of (tti,..., an) such that a[i] > ... > a[„].

Given a, 6 € E", we say that a majorizes b iflf

hi Vm 6 {1,..., n —1}
t=i t=i

n n

E"^ = E*"'
i=l i=l

As a trivial example, given any o € E",

(ai,...,an) majorizes (^•••»^j
\ 1=1 1=1 /

The following theorem will be useful later.



Theorem 1. Let H € be symmetric with diagonal elements and
eigenvalues Ai,..., A„. Then X majorizes h.

Conversely, i/A, /i GR" and A majorizes h, then there exists a symmetric matrix
H G R"^" with diagonal elements /ii,..., /i„ and eigenvalues Ai,..., A„.

Proof. See theorems 9.B.1 and 9.B.2 in [4]. •

In the sequel, given a symmetric matrix H G R"^" we will denote X(H) the
vector whose components are the eigenvalues of H in non-decreasing order. I.e. if
Ai > ... > An are the eigenvalues of H, we will write X(H) = (Ai,..., An)-

The following lemma will be used later.

Lemma 1. Let H G R"^" be symmetric and nonnegative definite and let v G
be a unit-norm eigenvector associated with the minimum eigenvalue of H. Then, for
allp> 0 and all s G

X{H -\-pss^) majorizes X{H -^pw^)

Proof. See [16] or [13]. ^

A function f : A-^R (with A C R") is said to be Schur-convex ifffor all a,b€ A
such that a majorizes b we have f(a) > f{b). If —/ is Schur-convex, / is said to be
Schur-concave.

Lemma 2. Let g : A R (with A C R a convex set) be convex (concave). Then
the symmetric function / : A" —> R with f{a) — Schur-convex (Schur-
concave).

Proof. See theorem 3.C.1 in [4]. •

Given a set A C R" and an element b € A v/e say that 6 is a Schur-minimum
of A if and only if for all a G A, a majorizes b. Clearly, if / : A —> R is Schur-
convex (Schur-concave) and 5GA is a Schur-minimum ofA, then / attains a global
minimum (maximum) at b.

6 Sum capacity and TSC

In this section we define two important performance measures of a given configu
ration. Sum capacity (Csum) is defined as the maximum sum of rates at which the
users can transmit and be reliably decoded at the base station. All other parameters
being thought fixed, we will regard Caum ss a function of the signature sequences,
i-e. Csum : S -^R. It can be shown that ([15])

C,um(S) =ilogdet (7 + ^logdet (SDS^ +W)-^logdetCPT) (7)
If we use the sum capacity as a measure of performance, an optimal configuration
5 G <S is one that maximizes Csum-



Given 5 6 <S, let A= X(SDS^ + W). Then
N

det(SDS^-\-W) = Y[K
n=l

and so
1 N

C,um{S) =2IZ ~2
n=l

As log(-) is a concave function, lemma 2 implies that CsumiS) is a Schur-concave
function of X(SDS^ + W).

Wedefine a generalized total square correlation (TSC) as a function TSC : <5 —R
with ([5])

TSC(S) =tr [(Si?5^ + (8)
A motivation for the choice of TSC as a performance measure is the following. First
write

TSC(S) = tr[(5n5^)'̂ ]+tr(SDS^W^) + tr(WSD5^) + tr(W'2)
= tr [(SDS^)^] + 2tr(5£>5^W) + ix{W^)

Now SD^ = PtStSfci hence

tr [(SDS^)^] =ttPkPm{s^^m) —̂ +2̂ ^^ P̂kPm{SkSm)
k=l m=l k=l k=l m=A:+l

and
K

txiSDS'̂ W) = Y,PkslWs^
k=l

So tr [(5iA5^)^] is a weighted sum of the interference power "seen" by all users (plus
the constant term and tr(S'jD5^W) is a weighted sum of the noise power
"seen" by all users. Hence it seems reasonable to use TSC as a performance measure;
the smaller the TSC the better.

Given S eS and A= X{SDS^ + W), the matrix [SDS^ + has eigenvalues

A((5D5^ + W)2) = (A?,...,A^)
and therefore, as the trace of a matrix is equal to the sum of its eigenvalues,

N

TSC(5) = 5^A2
n=l

As (•)^ is a convex function, lemma2 implies that TSC(5) is a Schur-convex function
of X{SDS^ + W).

From now on we will focus on TSC. We will prove later in section 8 that the set
{X{SDS^+W) : S e S} has a Schur-minimum element. Therefore, as Csum is Schur-
concave and TSC is Schur-convex, the configurations attaining this Schur-minimum
element will achieve the maximum Caum and the minimum TSC. Hence the optimal
configurations are the same whether we use Csum or TSC as performance measure.

8



7 MMSE iteration

We would like to obtain configurations that attain the minimum TSC. To this end
we will define an iterative procedure that, starting with some initial configuration,
modifies one of the signature sequences at each iteration in a way that reduces the
TSC.

For a givenconfiguration iS" G <5 we willdenote the normalized MMSE linear filter
for user k as Ck{S). Hence by (5),

ct(S) = , ^ {SkD„Sl +H^)s* (9)
sjsl +W)-'' s,

or equivalently from (6),

ct(5)= . ^ + (10)
^sliSDS^ +Wy'̂ Sk

We define the MMSE user k update function as

^k('5') = [ Si ... Sk-i Ck(S) sjfc+i ... s/f ] (11)
which replaces the signature sequence for user k by the corresponding normalized
linear MMSE filter. The following lemma ([10]^) states that this update strictly
decreases the TSC except when the signature sequence for user k coincides with the
MMSE filter.

Lemma 3.

V5 G5 : TSC(^k(S)) < TSC(5), with equality iff Sk = Ck(S) (12)

Proof. By direct calculation:

TSC(5) - TSC(^»a:(5')) =

2pkSt SkDkSl + W- +Wy'
si {SkDkSi + W) Sk

Sk

Given a symmetric positive definite matrix M and a unit-norm vector u, we claim
that v^Mv > with equality iff v is an eigenvector of M. To see this apply
Cauchy-Schwartz inequality twice:

1= < M^v M~^v = (y^Mv)

[v^M~^vY = < Ibll^ ||M~^u|P = v^M~'̂ v
with equality in both inequalities iff v is an eigenvector of M, and thus we get the
desired claim.

Finally we apply our claim above to M = SkDk^+W and to obtain (12).
•

^[10] considersthe case ofwhite noiseand equal received powers, but the proof holds for arbitrary
noise covariance and received user powers.



Consider the MMSE update dynamics in S:

= $,+i(5">) (13)

where we define for t> K setting = ^t-K- This corresponds to replacing each
signature sequence using the MMSE update, one at a time. We remark that this
iteration is amenable for a distributed^ implementation. The linear MMSE filter for
a user can be implemented blindly ([3]), i.e. without needing knowledge of received
powers or signature sequences of other users.

Note that given any initial configuration 5^°^ 6 S, the sequence TSC(S^*^) defined
by equation (13) converges because it is non-increasing by lemma 3 and bounded
below.

The MMSE update function is defined as

= (14)

Let be the set of fixed configurations of

F^ = {SeS: ^S) = 5} (15)

Lemma 4. Let S e S. Then

TSCmS)) < TSC(5), with equality iff S e (16)

Moreover, S E Ft^, if and only if ^k{S) = S for all k E {I,..., K}.

Proof. Let S E S. Applying lemma 3 K times we get

TSC(5) > TSC(^i(5)) > TSC(^2{^i(S))) > ...
> TSC(4>Ar-i(... ^1(5))) > TSC($(5)) (17)

IfS^ then there is somek E {1,... ,K} suchthat 4>/k(... ^1(5)) ^ ^ifc-i(... ^i('S')),
and so by lemma 3 TSC($jfc(... ^i{S))) < TSC($fc_i(... ^i{S))). Hence using (17)
TSC(5) > TSC($(S')).

If TSC(5) = TSC(^(5)) then equality must hold in all inequalities in (17). Prom
lemma 3we get ^i{S) = S, ^2(^i(S)) = ^i(«S'),..., $(5) = ^k-i(- ••̂ i(^))- Hence
we obtain S E F^ and also ^k(S) = S for all /c € {1,..., K}.

Next we consider the last assertion. If ^k(S) = S for all A; € {1,.. .,K}, then
clearly S E F^. Now assume S E F^. Then TSC(5) = TSC($(5)), and hence as
proved above ^k{S) = S for all A; € {1,..., K}. •

The following lemma and theorem provide a characterization of the fixed config
urations.

Lemma 5. Let iS = [ si ... ] 6 <S. Then S E F^ if and only if for all
Sk is an eigenvector of SDST -f W.

^Here distributed means that can be implemented in pEurallel modules with no interaction. The
user receivers are in the base station, hence co-located.

10



Proof. Let 5 € We can apply lemma 4 to obtain Ck{S) = 5*: for all /c € {1,..., i^}
and hence from (10),

+ = AfcSfc (18)

where =

Conversed

ing (10) Ck(S) = Sk, hence ^k{S) = S for all A: € {1,, K} and so 5 G •

Theorem 2. Let S € F^. Then

1. There exists an orthonormal basis of (common) eigenvectors ofSDS^ and W.
Equivalently, matrices SDS^ and W commute.

2. Let Wi,...j wn be the eigenvalues ofW, and let {gi,..., g//} be an orthonormal
basis of eigenvectors of SDS^ and W with Wg„ = WnQn for all n G{1,..., N}.
There exist L S {l,...,iV}, a partition (with possibly some of the
Jt empty) of the set {1,..., K}, a partition Ji,... ,Xl of the set {1,..., N},
and positive real numbers Mi > ... > such that for all i £ {1,..., L};

(SDS'^-\-W)sk = iJieSk \fkeJe (19)
{SDS'̂ -{-W)qn = mn VnGJ^ (20)
A(5D5^ + W) = (Ml,..., Ml, ,Ml,.-.,Ml) (21)

III I 12:1,1

itT f^ ^
' \k^Ji n€Xi )

slsk, = 0 ^kreJe,k2e{l,...,K}\Je (23)
{sib : A; G C span{g„ : n GXf} (24)

and

sKSDS^-hWysk
y suppose (SDS^ + Sk = ^kSk for all k G {1,..., K}. Then us-

2

TSC(5) =^|l. + (25)
1=1 ^ \keJi neit /

where \Xi\ is the cardinality ofXi.

Proof. Let L be the number of distinct eigenvalues of +W, and mi > • •• > Ml
be such eigenvalues. Prom lemma 5 all Sk are eigenvectors of SDS"^ + W, so we
can partition the set {1,...,K} grouping the signatures associated to the same
eigenvalues. I.e. if we define for ^ G {1,..., L}

Je = {k€{l,...,K}: {SD^ + W)si, = ^^tsk} (26)

the Jt are disjoint, Utei .?£ = {li •••> and equation (19) is satisfied. As SDSJ +
W is a symmetric matrix, eigenvectors associated with distinct eigenvalues are or
thogonal and (23) is proved. Consider any i G {1,..., X} with ffi ^ 0. If we write
Sj, = [sfc, ^ € Ji] and Dj^ = diag {pk,k e Ji) it follows

{Ss,Dj,^j^ + W)sk = iiiSk ^k€Ji (27)

11



Multiplying (27) on the right by phS^ and summing over k e Jevfe obtain

iSj,Dj,Sl + W)Sj,Dj,^, = iJieSs,Dj,Sl

Hence WSj^Dj^S^^ = —(Sj^Dj^Sj^)^ is a symmetric matrix, which
implies that W and commute. As

5D5^= 2 Sj,Dj,Sl
e = i

we see that W and SDS^ commute. Therefore there exists an orthonormal basis

{^ij•••>Qn} of eigenvectors of W and SDS^ (see e.g. corollary 3 of theorem 3' in
chapter VIII of [2]). Hence 9i,..., are eigenvectors of SDS^ + W. Now choose
the partition of the set {1,..., N} as follows:

J, = {n€{l,...,iV}: {SDS^ + W)qr. = peqr^}

Then (20) is satisfied and (21) follows. Fix i € {1,...,L} and let n e Xe and
k G{1^... ^K}\Jz. Then and Sk are eigenvectors of SDS^ + W associated with
distinct eigenvalues and hence are orthogonal. Therefore

mn = iSDS'̂ + W}q„ = (Sj,Dj,Sl + W)gn

and SjfDj^l^^qn = (Ai£-iyn)9n- By convention we will take Sj^Dj^Sj^ as the NxN
zero matrix when ^7^ = 0. Note that with this convention, the previous equations
hold even for such ^'s. If we consider n € {!,..., N} \ X^, as for all k e Je, qn and
Sk are orthogonal, Sj^Dj^Sj^qn = 0. So we can write

Sj.Dj,Slgn =I
Multiplying on the right by q"^ and summing over all n € we get

(fJ't - Wn)qn if n € X/ . .
0 ifn€{l,...,iV}\X^

= ^{N- Wn)gnql (29)
n^Xi

where we have used the fact that qnQn is the NxN identity matrix because
the qn form an orthonormal basis. For k G using the same identity and that Sk
is orthogonal to qn for n ^Xe, we obtain

Sfc = XI9"9n = X
n=l n6l/

which proves (24).

12



Now, as for any matrices A and B of appropriate dimensions tr(i4B) = tr(BA),

keJt

where we have used the fact that the diagonal elements of Sj^Sj^ axe all 1 because
the signatures are unit-norm. Also tr(g„gj') = q^Qn = I, so from equation (29) we
obtain (22). Equation (25) is obtained noting from (21) that TSC(5) = ^£=1 Kl f4'

•

We remark that the characterization obtained in the proof of theorem 2 may in
general not be the only one satisfying (19)-(25). As an example, let A" = 2, iV = 2,
Pi = P2 = 4, W = diag(l, 9) and

5 =
1 1

0 0

Then SDS^ + W = 9/ and hence, by lemma 5, 5 is a fixed configuration. The
characterization obtained in the proof of theorem 2 is L = 1, /xi = 9, = {1,2},
Xi = {1,2}. Another characterization which verifies (19)-(25) is L = 2, jLti = /Z2 = 9,

= (1,2}, J2 = 0, Ji = {1}, I2 = {2}.
The characterization obtained in the proof of theorem 2 is clearly the most eco

nomical one in the sense that L is as small as possible (because all / '̂s are distinct).
However we will find it convenient to use the characterization of the fixed configura
tions as in the following lemma.

Lemma 6. Let 5 € Then there exists a characterization as in theorem 2 satis

fying equations (19)-(25) that also verifies thefollowing for all i E {1,..., L}:

1. If then \Ji\ > \Xe\ and for all n € Xt, fie > Wn-

2. If then \Xe\ = 1.

3. If i < L and Je^^ then fie > fie+i.

Proof Take the partitions in the proof of theorem 2. Consider any £. € (1,..., L}
with Je i=- 0, and any n € 2^. Prom equation (28),

Sj^Dj^S'̂ ^qn = {fie - U^n)9n

As SjfDj^S^^ is nonnegative definite, fie^'^n-
Assume fie = u;„. Then Sj^Dj^^^qn = 0. This implies qn^JeDj^S^^qn =

1^3/*^5/II ~ ^ hence, as Dj^ is invertible, Sj^qn = 0. Therefore, qn is
orthogonal to the signature sequences of all users in Je- Define:

Jl = 0

Je = Ji
X[ = {neXe \ fie^Wn}
X'l — {neXe: fie > Wn}
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Note that > \X'l\ because {qn - n ^ X"} are orthonormal eigenvectors of
Sj '̂Dj '̂S^ii associated with nonzero eigenvalues, and hence Sj '̂ has rank \Xg\ and
\J"\ columns.

A new characterization satisfying (19)-(25) (with L increased by |2J|) is obtained
by dividing {Je.Xi) in |2J| + 1 parts: [J'l'.X'l) and for each n € X[, [Jj!, {n}).

If we do the same for all i for which there is at least one n ^Xi with Wn = /i£,
we obtain the desired result. Let L, (»7i, •••, (2^i,... Ai ^ ^ Al be
the new characterization. Note that in our construction given any A there can be
at most one t with Ji^ ^ and fie = X. Hence condition 3 is satisfied ordering the
partitions so that if fie = A^+i then Je = ^' •

Given € <S we can define the w-limit set ([8]) with respect to the dynamics
(13) as:

= {SeS:3ti<t2<... s.t. lim = S} (30)
m—>oo

In words, a;$(5^°^) is the set of all limit points of the trajectory
The following lemma shows that for any initial set of signature sequences, the

MMSE iteration (13) converges to the set of fixed configurations.

Lemma 7. Given any 5^°^ € S,

C (31)

Proof. If 5 € a;$(5^°^) then < ^2 < ••• s.t. lim,„^oo= S. For some k G
{1,..., A"}, t,n is a multiple of k for infinitely many m, let be the corresponding
subsequence. Then -> 5 as m —> oo. By continuity of
^k+i{S) as m -)• oo.

Now assume ^k+i(S) / S. Then by lemma 3, TSC($fc+i(5)) < TSC(iS'). Let
A = TSC(iS') —TSC(^fc+i(5)). Then, as TSC is continuous, there exists p such that
Vm > p it is TSC(5( '̂"+i)) < TSC(5(^-)) - f. Thus TSC(5^<"+i)) < TSC(5(^-)) - f
for p > m and therefore TSC(5^*^^) —>• —oo as m -> oo. This is a contradiction
because TSC is positive, and thus ^k+i{S) = S.

But then <&ib+i(5^*^^) = hk+i{S) = S as m oo. Recurring to the
same argument as before we now get ^k+2(S) = S. Repeating this argument {K —2)
more times we get ^(5) = 5 as we wanted to prove. •

We conclude that for any initial condition the MMSE iteration approaches the
set of fixed configurations as t oo. As TSC is a continuous function, this implies
that limt_>ooTSC(5^*^) € Tp where

Tp = {TSC(5) : 5 G F$} (32)

Note that from theorem 2, Tp has a finite number of elements because there is a finite
number of ways of partitioning the sets {1,..., J^} and {1,..., AT}. A loose upper
bound on |Tf| can be found by noting that for a given L, there are less than ways
of partitioning the set {1,..., N} in L subsets: for each element in {1,..., N}^ we
can choose one of the L subsets in the partition to put that element. Analogously,
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there are at most ways of partitioning the set {1,..., if} in L subsets. Hence,
as L €

(33)
L=1

Let r be the minimum of the TSC:

r = minTSC(5) (34)

As 5 is a compact set and TSC is continuous, the minimum is attained and we can
define the set of optimal configurations:

Q = {5 G5 : TSC(5) = r} (35)

Clearly we have Q. C. Fi^\ if iS G then r = TSC(5) > TSC(^(5)) and by lemma 4
TSC(,S) < TSC($(5)), and therefore TSC($(5)) = TSC(5) which again by lemma4
implies 5 G But it is easy to see that contains non-optimal configurations,
i.e. n except for the trivial case iV = 1. As an example take N >2 and let
W\ < ... < wpi the ordered eigenvalues of W, and gi,... be an orthogonal
basis of associated eigenvectors. Then, if we take Sk = qN for all k G A"}
we obtain a fixed configuration S E F^. It is easy to see that if sj = qi and
sj. = qj^ for A; G {2,..., A}, the new configuration S' attains a lower TSC value:
TSC(S") < TSC(5). Hence 5 ^ fi. Actually, S attains the global maximum of the
TSC over S.

Therefore, for iV > 2, the set Tp has more than one element and we cannot
conclude that limt_»ooTSC(5^*^) = r as we would like. Simulations suggest that if
the initial condition 5^°^ is chosen randomly, then TSC(5^*^) converges to r with
probability one ([10]), but no formal proof has been given.

8 Global optimed configurations

We have seen in the previous section that the global minimum of the TSC over all
configurations S E S is attained for some fixed configuration of the MMSE update
S E F^j i.e.

minTSC(5)= minTSC(5)
S&S

Any fixed configuration is associated with a partition of the set of users and a
partition of the set of signal dimensions as shown in theorem 2. Conversely, given
such a pair of partitions, we could try to find a corresponding configuration S E F^.
This is not always feasible, as the following simple example shows.

Let K = 2, N = 2, Pi = p2 = I, wi = 3 and W2 = 0.2. Consider L = 1,
Ji = {1,2} and Ji = {1,2}. For this partition pair we should have according to
theorem2 that SDS'̂ -\-W has eigenvalue pi = 2.6 with multiplicity 2 (i.e. SDS^-\-W
is 2.6 times the 2x2 identity matrix). But, being SDS^ and W symmetric and
nonnegative definite, the maximum eigenvalue of SD^ -h W has to be at least as
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large as the maximum eigenvalue of Wi. As 2.6 < 3 we see that it is not possible
to find Si and S2 such that SDS^ -\-W = 2.6/ and hence the proposed partition pair
is not feasible.

The following lemma characterizes the feasible partition pairs.

Lemma 8. Let{qi, -••^Qn} be an orthonormal basis of eigenvectors ofW respectively
associated with eigenvalues Wi,... ,wn. Suppose we are given L € N}, real
numbers /ii > ••. > Ml, a partition Jx-,.- .Jl of {1,... ,K} (with possibly some Jt
empty) and a partition Ti,..., Jl o/ {1,..., N} with

' \k€Jt n€l/ y

Then following are equivalent:

1. There exists a configuration S € S satisfying equations (19)-(25).

2. For each ^ 6 {1,..., L},

Ht >max f{io„ :n€I<} U :M6{1,... ,min(|l£|, |Ji|)}| j
(36)

where p^ is the m-th largest component of (pk : k e Ji) and is the m-th
smallest component of (it;„ :n eXg).

Proof.

(i => 2) Consider any £ € L}. Using (20) and (24), as {gi,...,giv} is an
orthonormal set, we can obtain as.in the proof of theorem 2 (see (28)),

This implies that Sj^Dj^Sj^ has eigenvalues (in non-increasing order)

N-W

As Sj^Dj^Sj^ is nonnegative definite, all eigenvalues must be nonnegative and
hence m/ > max{it;„ : n G2^}.

i 1

Consider the |»7£| x matrix Dj^S^^Sj^Dj^. It has thesame nonzero eigenval-
- - rtT riTues as SjfDj^Dj^Sj^ = Sj^Dj^Sj^ and the diagonal elements are {pk -k €. Ji).

Prom theorem 1 we obtain that

(M£ 0^^^ )majorizes (pf,... ,pf^ |̂)

16
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where for convenience we have written the eigenvalues and diagonal elements
in non-increasing order. The above majorization relation implies that for all
M G {1,... ,min(|j£|, \Ji\)} we have

or equivalently

M M

4
m=l m=l

1 ^
^ 77 (Pm + «'m)M ,

m=l

1) Fix any ^ € {1,..., L}. Define

= {n G2£ : /i£ > it;n}

Prom (36) > Wn for all n G thus for n GXf \XJ we have fii = Wn- Also
^ \iJi\- Otherwise we would have

1 \Ji\ 1 / \Ji\ \

-S =i:^ (£ ^
and /Z£ > hence we would get

p«>i^(Ep'=+E'"''
' \keJe neXt

which is a contradiction.

Equation (36) also implies that

(fit -w{,...,fie- wL,,0, ...,0) majorizes (p{,... ,pU{)
\Je\-\X'i\

Hence from theorem 1 we can find a symmetric matrix Hi G with
eigenvalues

X{Hi) = (fii-wi,...,fjLi-

and diagonal elements {pk k e Jt). As Hi is symmetric and has |Xjg| nonzero
eigenvalues, it can be written as Hi = ViKiV^ where A^ = diag(/i£ —Wn'.nE
X;) and Vi G satisfies VfVi = L Let Sj, = where

Qx[ = [Qn,ne XJ]. Now using Q^Qx'̂ = / we get = Dj^HiDj^ has
unit diagonal entries, so Sj^ has unit norm columns. For k € Ji take Sk as the
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corresponding column of Sjr The columns of are linear combinations of
the colunms of Qx'̂ and X'̂ cXt, hence (24) is verified. For n €Xe,

L

(SDS'̂ -\-W)qn = ^Q^,Ae'Q^,qn +Wnqn
e'=i

= Ql'f^eQx^qn + Wnqn
= (fit - Wn)qn + Wnqn = mn

and so (20) and (21) are satisfied. Equations (19), (23) and (25) are readily
verified.

•

Hence the problem of minimizing TSC(5) over S € S is equivalent to minimizing
the expression (25) over all partition pairs that satisfy (36). Next we present an
algorithm proposed in [14] that solves this optimization problem.

Without loss of generality, from now on we will assume pk and Wn are ordered so
that Pi > P2 ^ ^ Pk and wi < W2 < .. -w^.

Algorithm 1 (A).

Input K, N,{pu..,,pk),(wu..., wn)-

Output L, (i^i, •••, Xl)} (Ti, •.. ^XX)f (/ii, •••, Pl)

Call syntax

[L, (Ji,..., Jl), (Ti, ... ,Xl), (Mi, ••., Pl)] = A (K, N, (pi,... ,pk), (wu . ••, wn))

Update

1. If N = 0 then let L = 0 and exit.

2. Let

Ml = max 1 1^Pk + ^'fn ) ^ U^ — 2^ (p„ + iii„); M € {1,...,min(iV - l.ii")}

(37)

3. (a) If Pi = Wn then:
• Let Ji = 0,Xi = {iV}.
• Call

[V,{J[,..., J'y), (2J,... ,Xi,), (pi,..., pi,,)] = A (iif, iV - 1,(pi,,.. ,pk), (wu. •., Wn-i))
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• Let M = 0.

(b) Else if (11 =jj (l3fc=lP»: +T,n=l '"»)
• LetJi = {h...,K},Ii = [l,...,N}.
• Let V = 0.

• Let M = 0.

(c) Else iffii = X)m=i (Pm + for some M € {1,..., min(iV - 1,i^)}
then:

• Lei M be the maximum such M.

• LetJi =

• Call

[L\ ,Sij)'> (2^1) •••)^L')> (Mi' •••' /^L')] ~ A{K—M^ N—My (Pm+ij •••iPK)^ •••'

4- Let L = L' + 1.

5. For alii e {2y... yL}, let

P't — Pi-i

Je = + M

Xt = + M

where Jl_i + M = {k + M : k € Jl-i} and analogously for + M.

6. Exit.

We first state a simple fact about the output of algorithm 1.

Lemma 9. Let

[L, {Ji,Jl), (Xi,... ,Ii), inu(1l)] = A (K, N, (pi,... ,Pk), (wi,.. .,wn))

Then /xi > ... > {JLl-

Proof By the recursive nature of algorithm 1, we only need to prove that if L > 2
then fii >fj,2' Note that if ni =-^ (^k=iPk +I3n=i then L=1.
Therefore there are only six possibilities:

• IJ>i = wn and:

— /X2 = wn-1' Then clearly /xi > /i2.

- lh =j^ (nitei Pk + ifn) •From (37)

''I ^i (Ep* + +
\fc=l n=l /

iV-1
P2

N
\k=l n=l /

This implies /xi > ^2-
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- Em=i (Pm + Wm) for some M 6 {1,..., min(iV -2,K)}. Prom (37)
Ml ^ X)m=i H" hence /xi > /X2'

• Ml = a77 Emii (Mm + for some Mj € {1,..., min(iV -1,7^)} and:
- /X2 = Prom (37) /xi > ly^v, i.e. Mi ^ M2.

M2 =;v-Mi (E*;=Mi+lMfc +En=Mi+l ^n)*FrO^l (37)
1 / \ > \ Ml N —Ml

\k=l n=l /

This implies Mi > M2.

~ y^^Wi Lm=1i^ii (Pm +"'"•) for some M2 e {1,..., min(iV - Mi - 1, A" - Mi)}.
Prom (37)

1 , Ml M2
'"-MTTli^ 5 '̂" +'"'"^ =MrTli '̂'' +MrTM2

Thus Ml ^ M2.

•

As proved in the following lemma, the partitions output by algorithm 1 satisfy
conditions (36) and therefore we can construct a configuration S corresponding to
this pair of partitions.

Lemma 10. Let

[L, (Pi. •••>Pt)] = A {K, N,{pu... ,pk), (t«i, •••, wn))

There exists S G Fip such that equations (19)-(25) are satisfied. In particular,

A(5D5^ -\-W) = (fii,.. ., pi, ,p,L,.. ., pll)
III I IIlI

Proof. We use lemma 8. By the recursive nature of algorithm 1 we only need to
prove (36) holds for fJ>i,Ji,Xi. It is straightforward to see that

' \keJi nezi /

and by (37), equation (36) is satisfied for ^ = 1. •

Our next goal is to prove that such an S corresponds to a vector of eigenvalues
of SDS^ + W which is a Schur-minimum of the set of vectors of eigenvalues of
S'DS'"^ + W over S' eS.
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Definition 1. We will say a characterization as in lemma 6 is ejfficient if for all
t\ < ti € {1,..., L} the following conditions are satisfied:

2. Pki > Pk2 for all ki e Jtx and k2 € Je^.

3. If Jix 0 then Wm < Wn2 for all ni € J/j and n2 € .

Lemma 11. The characterization output by the algorithm 1 is efficient.

Proof. Follows directly from algorithm 1. •

Lemma 12. For all efficient characterizations, given any G {1,..., L —1} there
exist M G{1,..., min(iV —1,K)} and G{0,..., A'" —M —1} such that

t' M R-l

^ lJLi\Xi\ = +Wm) +^ Wn-t (38)
£=1 m=l r=0

and
e

M+R= Y,\^i\ (39)
£=1

Proof. Consider any ^'g{1,...,L—1}. From (22),

Yim\Xi\ =X! (HP* +IZ
£=1 £=1 \k^Jt neXt

Define

Then

Define

j =
£=1

£'

I = \jTt
£=1

I

£=1 k£j nel

T = \Jlt
tec

X" = X\X'
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Hence
I'

^ ^ Pt + ^ ^ fn (40)
^=1 k&J nGI' n€l"

Consider i ^ C. As ^ 0, IJ^I > [Jfl (see condition 1 in lemma 6). As
^ < I' < L, hy condition 1 in definition 1, \Ji\ < \Xt\. Therefore \Jt\ = \Xi\. This
implies \J\ = |J'|. Let M =\T\axiAR = |J"|. Clearly M+ R=\I\ = YLx |2«|.
SO (39) is verified.

As \J\ = M (recall pi > ... > Pk)^

M

Y^Pk^YlPrn
k€J m=l

Assume the above inequality is strict. This implies that there exist k € J and
me {1,•.., M} \ J with Pit < pm- But then k € for some ix < i' and m € Jt^
for some ^2 > which contradicts condition 2 of definition 1. Therefore

M

'^Pk = 'y^Pm (41)
k^J m=l

As \X"\ = R (recall wi< ... < w^).,

R-\

^ WN-t
n€I" r=0

Assume the above inequality is strict. This implies that there exist n e X" and
m e {N —i? + 1,..., iV} \ T" with it;„ < Wm- Let ^1, ^2 ^ {1? •••>L} with m €
and n eXi^. As n e X", we have £2 < Ji^ = 0 and Xfj = {n} (see lemma 6). Then
p£2 -= Wfi' As m e Xi^j > Wm- Therefore > Wm > 'Wn = Pi2- Hence (recall
pi> .. .> Pl) £\ < £2- So £\ < £' and as m ^X" we must have £i e X, i.e. ^ 0.
But then by condition 3 of definition 1 we should have Wm < Wnj a contradiction.
Therefore

R-l

^Wn = Y^WN-r (42)
nez" r=0

As \X'\ = M (recall wi < ... <

M

^Wn>^Wm
nex' m=l

Assume the above inequality is strict. This implies that there exist n e X' and
m e M} \ X' with Wn > Wm- Let £1,^2 ^ L} with n e Xt^ and
m e Xi^. We claim that £i < £2- First assume £2 < £'. Then, as m ^ X\ we have
Je^ = 0 and so pi^ = Wm <Wn< Pti- Hence £1 < ^2- Now assume £2> £'• Then also
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< i2 because as n GX', As n € X' we have ii G£, so ^ 0. But then
by condition 3 of definition 1 we should have Wn < Wmi a contradiction. Therefore

M

^Wn = ^Wm (43)
n£X' m=l

Now (38) follows from (40), (41), (42) and (43). •

Theorem 3. Let an efficient characterization (of some S* G F^) be given by L*,
(xr,...,x£.),

Then for all S € F^,

X(SDS'̂ + W) majorizes (/ij;,..., /ij, , ,...,

m i2^2.i

Proof. Let
X* = ifJ'i) •••j 1) jfJ-L* 1 •1y-L")

i^ri 1^2.1

Consider any S £ F^ along with its characterization of theorem 2. For n GXe, take
A„ = He- I-e. A„ is the eigenvalue of SDS^ + W associated with Qn Then

A(S'X>5^ + Ty) = (A[i],...,A(Ar])

We want to prove that A majorizes A*. Assume not. Then there exists V G
{1,..., iV —1} such that

Tn=l m=l

Take the smallest such V. Hence X[v] < Xy. Take i' G {1,...,X} such that

Etei' \^t\<y and Dti I2?l >V- Define V=ZLi li;|. For allm €{v +1,..., v}
we have X^ = /ij/ = Ay > A[v] > A[„i]. Therefore

E <E
m=l m=l

Clearly V < N because

N N K N

E -'̂ M = E =Ef* •*• E
m=l Tn=l k=l n=l

®Note that the components of A* are ordered non-increasing,but the components of Aare ordered
according to the noise eigenvalues.

23



Therefore I' < L. Hence we can apply lemma 12 to obtain

V t'

i=i

M

— ^ ^{jPm "b ^m) ~l~ ^ "̂^N—r

m=l i=\

M R-\

m=l r=0

for some M € {1,..., min(iV —1,K)} and R £ {0,..., iV —M —1} with M + R =
V. Hence by (44),

V M R-1

^ ^-^[m] ^ ^{Pm d" ^m) "b ^ "̂^N—r (^6)
m=l m=l r=0

Now for n € {1,.. •, AT} let 7„ be the eigenvalue of SDS^ associated with Qn,
i.e. Jn = As D^S^SD^ has diagonal elements (pi,..-jPk) and the same
nonzero eigenvalues as SDS^j from theorem 1

(7[1]>• ••,l[min{K,N)], ) majorizes (pi,...,Pk) (47)
K-mm{K,N)

Let Am C such that \Am\ = M and Z)ne>iM 7n = Em=i7[m]. Define
Bm = {N — 1,.. .,N} \ Am- Clearly \Bm\ < R- Take any subset Cm C
{1,..., N} \ (Am UBm) with |Cm| = R —\Bm\- This is always possible because

|{l,...,7V}\(AMUBM)|=iV-M-|BM| = iV-V + J?-|SM|

asV <N.

Now from the definition of Am and using (47) we get

M M

^ ^ ^ ^ {.Ifm "b ^m) —^ ^7[m] ~b ^ ^ ^ ^ ]Pm "b ^ ^ Wm (^S)
mGA\f m=l ttiGAm m=l mGAjif

AsSDS^ is non-negative definite, 7„ is non-negative and therefore A„ = 7n+it;n >
for all n € {1,.. •, N}. Hence

meSMUCAf ttiEBmUCm

and from (48),

M

^ ^ ^ ^ P̂m "b ^ ^ l^m (^^)
mGAMUBAfUCM m=l m€i4jv/UBAfOCM

Note that {AT —i? H-1,..., AT} c [Am U Bm UCm)- Define

Em = (Am UBm UCm) \ {N — -H 1,..., AT}
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Then \Em\ = |^m U Bm UCm| - ^ = M. Therefore

R-\ R-\ M

^ Wm = ^WN-r-^ ^
m^AM^BMUCM r=0 m^EM ''=0 "»=1

Introducing this inequality in (49) we obtain

M R-1 V

^ ^ ^ ^ jjPm + '̂ m) + ^ "̂^N-r —^ ^
"1=1 »'=0 "*=1

But \Am U Bm UCm\ = M R = V^ hence

V

^ -^fm)
ttiEAm^Bm^Cm m=l

So we get

\rn] >
m=l m=l

This contradicts (44). Therefore Amajorizes A* as we wanted to prove. •

Theorem 4. Given any S £ S there exists S' € such that X{SDS^ + W) ma-
jorizes X{S'DS''̂ -^W).

Proof. Consider any 5 G <S. Wewillrecursively generate a sequence ofconfigurations.
Take = S. Given we will compute as follows. Foreach /cG {l,...,i^},
let Vk G be a unit-norm eigenvector of 4- W associated with the
minimum eigenvalue. Let

5'-'.'̂ ) =[4" ... 4'i, ... 4']
Take any k* G {1, •.., K} such that

TSC(5('+ '̂'=*)) = min{TSC(5 '̂+ '̂*^) : k e {1,... ,K}}

and define

Applying lemma 1 with H = S^^}Dk'(S^k*V + W, u= Vk* and s = we obtain

X{S '̂̂ D(S '̂Y + W) majorizes (50)

Also for any k e {l,...,A'},we can apply lemma 1with H = DkiS^^)"^ + W,
V = Vk and s = Ck(S) (i.e. s is the normalized MMSE linear filter for user k) to
obtain

A($fc(5<")I>($t(5<"))^ + W) majorizes A(,S"+1''='D(S'('+''*')^ + W)

25



and therefore as TSC(-) is Schur-convex, < TSC($fc(5^*^)). Hence for
alUG iiT},

< TSC($fc(5(^^)) (51)

As «S is a compact set, there exist S' € S and a subsequence {5^*^^}^=! such
that limro-foo = S'. By continuity and transitivity of the majorization relation,
equation (50) implies

XiSDS"^ + W) majorizes XiS'DS'"^ + W)

Take any A; 6 {1,..., K}. Then from (51) for all A; G{1,..., K},

TSC(5'('-+^^) < TSC(5^^+^^) < TSC($jb(5(*-^)) < TSC(5^*-)) (52)

where the first inequality follows from (50) because TSC(-) is Schur-convex and the
last one from lemma 3. Letting m —oo in (52), by continuity of TSC(') and ^k{')
we obtain

TSC(5') = TSC(^a:(5'0)

and hence by lemma 3, S' = ^k(S')' As this holds for all A; G {1,..., K}, we have
S' = ^{S'), i.e. 5' G as we wanted to prove. •

Theorem 5. Let

[L\ (JT,..., Jl), (IT n.), (lA, •••, Ml-)] = ^ {K,N, (pi,.. .,pk), (wi,.. .,wn))

Then for all S € S,

A(5L>5^ + W) majorizes (/ij,..., /xj, , ,..., /xj.)

\^l\ KA

Proof. Take any S E S. By theorem 4 there exists S' G such that

X(SDS^ + W) majorizes X{S'DS'̂ + W)

By lemma 11 and theorem 3 we obtain

XiS'DS'"^ +W) majorizes (/x^,. ,/x;, /x^.,. ,/x^,.j
III I I^M

Hence by transitivity of the majorization relation,

A(S'r>S'̂ W) majorizes (/xj,..., y[x^ , /xj,.,..., )

|2^ri 12:1.
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Corollary 1. Let

[L\ {Ji\..., J2-), ...,A^)] = A (K, N, (pi,... ,pk), (wi,..., Wi,))

Then

{Pl, . . . , //j, , , , . •if^L')
|2:ri |IM

25 a Schur-minimal element of the set {\{SD^ + W) : 5 € «S} and

L*

TSC(5) =
S€S
minTSC(5) =

e=i

1 1max Csum(S) = oX) Ilog(Mi!) " 9log det(VF)
5€5

e=i

Proof. Follows from theorem 5 and lemma 10 because TSC is Schur-convex and Csum
is Schur-concave. •

9 Local minima of TSC

In this section we will prove an important property of the TSC function: that it has
no local minima other than the global minima. To state this formally, let us first
define a metric on S. Given 5, S' € «S, we define the distance between S and S' as
the maximum over the users of the angle between the two signatures assigned to the
user:

d(5,5')= max aiccos{s^s'k) (53)
k=l.,.K

Note that the triangle inequality holds: given 5, S', S" G5,

d(5,5") = m^^aiccos{sJsl) < Jarccos(5jsJi.) +arccos(s'fcS^)j
< max arccos(sj5i) + max axccos(s'̂ s'l) = d{S,S') + d(S',S")

k—l...K k=l...K

and hence d(-, •) is a metric. Given 5 € 5 and 9 € (0,tt] let B[S,9] be the closed ball
of radius 9 centered at S:

B[5,9] = {S' €S: d{S\ S) < 9} (54)

In order to state the main result of this section, we will proceed with some lemmas.

Lemma 13. If TSC has a local minimum at S E S, then for all A: € {1,... ,K}, Sk
is an eigenvector of SkDkSf[ + W associated with the minimum eigenvalue.

Proof. Assume there exists k G {1,..., A"} such that Sk is not an eigenvector as
sociated with the minimum eigenvalue of [SkDkS]^ + W). Let Abe the minimum
eigenvalue of (SkDkSf^ + W) and let u be a unit-norm eigenvector associated with A.
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Consider any e € (0,tt) and take S' with = Sm^OTm^ k and sj. = ask-^ffv^ where

q: = cose and p= -as^v +siga(slv)yja'̂ +1- This is valid because
s'̂ s'i^ = a^-\-P^-^2aps'kV = 1. We see that ps^v > 0and thus s^sj^ = a-\-ps'̂ v > a
and d{S, S') = arccos (gfsJt) = e. Direct computation shows:

TSC(5) - TSC(50 = 2pk(l - a^) [si {S^VkSl + W) s, - A] (55)

As (^SkDkS^ + W) is a symmetric matrix with minimum eigenvalue Aand Sk is not
an eigenvector associated with A, si [SkDkSl -\-W) Sk > X. Also 1— = sin^ e > 0
and therefore TSC(S') > TSC(5"). Hence there are configurations arbitrarily close to
S which attain a smaller TSC. This implies that TSC does not have a local minimum
at S. As this followed from assuming that Sk is not an eigenvector associated with
the minimum eigenvalue of {SkDkSl + W) for some A:, the lemma is proved. •

Corollary 2. //TSC has a local minimum at S E S, then 5 6

Proof. Apply lemmas 13 and 5. •

By corollary 2 all local minima of TSC are fixed configurations of the MMSE
update. Hence in what follows, we can associate with each local minimum of TSC
the characterization of lemma 6. The next three lemmas, which use the same ideas
as in [5], present necessary conditions on this characterization for a configuration to
be a local minimum of TSC.

Lemma 14. Let TSC have a local minimum at S E S and consider the character

ization of lemma 6. Then given /i,^2 ^ {Ij-'-jL} with ki E and
^2 € Je2 must have pki > Pk2'

Proof. Assume not, i.e. pki < Pk2' Consider any e > 0 and let a = sine and
P = —^OL- Take S' with sj. = Sk for k ^ {/ci, ^2}, gL = Vl —a^gfci + OiSk2 and

* *52

^k2 = —P^Sk2 PSki' because Ski is orthogonal to Sk2 and
therefore Hs'̂ Jl = ||sitj| = 1. Then

S'DS'^ = SD^ + A

where

A= {0'pki-a^Pki) {skA, - s/c2«rj+(p*i"Vl - a^+PkiP\/l - {sk,sl^ +SkAi)
Hence TSC(S') = TSC(S) + 2ti{{SD^ + PF)A) + tr(A2). Using (19) and (23) we
obtain:

TSC(5) - TSC(S') =

(Ph - Ph) - fPki) - ("Vi - 0^Pk,f - - o?+Pk,^^/l -
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Now replace for p = — and a —sine, and observe that
Vk2

TSC(5) - TSC(5') =2(nt, - f1- +o{e^)
\ Pk2J

As > fjLi2 by hypothesis and we have assumed pk^ < for small e we have
TSC(5') < TSC(5). Therefore, as d(5,5') < e, there are configurations arbitrarily
close to S with lower TSC. This contradicts the fact that TSC has a local minimum

at S and therefore we conclude pk^ > pfca • ^

Lemma 15. Let TSC have a local minimum at S G S and consider the characteri

zation of lemma 6. Then given ^1,^2 € {1,..., L} with 0, n\ €
and 722 € Xt^ we must have < Wn2 •

Proof. Assume not, i.e. it;„, > Wn2 • Define S' as follows. For k ^ Jt.^ let
sj. = Sfc. Let ai,a2 be real numbers with |q;i| < 1 and |a2| < 1. For /c € we
can write sjt = akqnx + where Ok = QniSk and Vk = (I - QniQnJ^k] and we define
sj. = y/l —Q;fafcg„i+Q;iafc9„2+^*:- Note that this isvalid because ||sJt|| = 1. Similarly,
for ke Jt2, we write Sk = + Vk where ajt = q^^Sk and Vk = {I -
define s'̂ = y/l- alokq^ + Q:2aA:9n, + Vk-

For k G J'ii we obtain:

s'tsf-Sksl = alal {qn^gl, - - a?a?

+ - "1 - 1j o* {<ln,vl +Vkql^) +aiat {q^^vl +VkqZ^
and similarly for k G Ji2 '.

s'kSk - Sksl = o^al {qn.ql, - +ai^Jl-o^al {q^ql^ +qn,qn,)
+ at (9n2«t + Vkqli) + "2®* ('"l"* + "t^ni)

We claim that

PkttkVk=0
keJty

To see this use (28) to write

T^PkakVk = ^ Pk(I - qniql,)skslqn,

= {I - qniql,)Sj,^Dj,^Sj^ q„, = (/ - = 0

Similarly, Y^k&jt PkO-k^k = 0- Using these identities it is straightforward to ob
tain:

S'DS'^ = SDS'^ + Ai 4- A2
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where

Ai = a?Pi {g„^ql^ - g„,ql^) +ai^l-ajPi {g„,gl, +9„j9^,)
A2 = aiPi {gn.Qni - Qn^qn^) +otiyJ\- ajPi +gn,ql,)

^ Pkoi
k€Jti

P2 = ^ Vkal

Now

TSC(5) - TSC{S') =
-2tr [{SDSf^ + W) (Ai + A2)] - tr (A?) - tr (A^) - 2tr (A1A2)

and after some manipulation we get:

TSC(5) - TSC(5') = - w,) (a?Pi - o^P^) - 2{a\P^ + a^P|)

+4a?a^PiP2 - 4aia2^1 - a\yj\ - alPiP^
Hence

TSC(5) - TSC(5') = 2(/i«, - m,) (a?P, - o^P^) - 2(aiP + UiPif+ o(||a||')

where ||a|| = •y/of+af-
Prom (28) follows = Pi +iUni, = P2 As we are assuming > x/;„2,

we have fjLi^ —ne^ + P2 = Pi + u;„, - Wn^ > 0 and thus we can take 0:2 =
Operating we get:

TSC(5) - TSC(5') = -Pe^WiPi (^n, - w„,) ^ 3^
Pi + Wni - Wn2

By hypothesis Jei / 0 which implies (lemma6) that > Wm, i.e. Pi > 0. Also
by hypothesis Thus for ai small enough we get TSC(iS') —TSC(<S') > 0.
Hence, as d(5, S') < \arcsin(Q:i)|, there are configurations arbitrarily close to S with
lower TSC. This contradicts the hypothesis that TSC has a local minimum at S, so
we conclude that Wm < Wnz- •

Lemma 16. Let TSC have a local minimum at S G S and consider the characteri

zation of lemma 6. Let £ E {1,..., L} with fxi > min£/g{i,...,L} Then \Ji\ < \Xt\,

Proof. Assume not. Then there exist £1,^2 € {1,..., L} with /Xf, > and |j£i| >
|j£i|. Take any n As rank(5j-^J = IX^J < we can find a column vector
V€ such that ||u|l = 1 and Dj^^v = 0. Consider any e > 0 and define S'
with sJt = Sk for k ^ Je^ and sj^ = cos(afc)s*: + sin(Q:fc)g„ for k € Jii, where = evk.
With this choice, after some manipulation we get:

TSC(5) - TSC(S') = 2e2(M<. - «|p + o(€') (56)
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So it suffices to make e small enough to get TSC(5') < TSC(S') and d(S,S') =
emaxkqji |ufcl < e. This contradicts the fact that TSC has a local minimum at S.

' •

Theorem 6. Let TSC have a local minimum at S E S. Then S has an efficient

characterization.

Proof. Consider the characterization of lemma 6.
Let £ € {1,.. .,L- 1}. If fJLe > Ml, by lemma 14 \Ji\ < \Ie\. If M£ = (J-l, by

condition 3 of lemma 6 we have \Js>\ = 0 < \It\. Therefore condition 1 of definition 1
is satisfied.

Now let ^1 < ^2 € {1, with 7^ 0. If it were = M£2> condition 3
of lemma 6 would imply = 0. Hence Then by lemmas 14 and 15,
conditions 2 and 3 of definition 1 are satisfied. •

Theorem 7. Local minima o/TSC are global. I.e. ?/TSC has a local minimum at
S e S, then S €Cl.

Proof. AssumeTSC has a local minimumat 5 € «S. By theorem 6, S has an efficient
characterization. Hence we can apply theorems 3 and 4 to obtain that for all S' € S,

X{S'DS'̂ + W) majorizes X{SDS^ + W)

Thus as TSC is Schur-convex TSC(5) < TSC(5') for all S' GS, i.e. S E Cl. •

Theorem 7 can be rephrased saying that if 5 G <S is not a global optimal config
uration, then TSC cannot have a local minimum at S. I.e. given any 5 G «S \ fl, for
all e G (0, tt] there exists S' GB[S,e] with TSC(S") < TSC(5).

Hence theorem 7 implies that all the non-optimal fixedconfigurations are unstable
equilibria of the MMSE update. If a fixed configuration S does not achieve the
minimum of TSC, then there exist arbitrarily small perturbations such that if the
MMSE iteration is started from these perturbed configurations, the TSC converges
as t > 00 to a value strictly smaller than TSC(5). We state this formally in the
following lemma.

Lemma 17. Given S G for all e > 0 there exists S' G B[S, e] such that for
the MMSE iteration with 5^°^ = S' we have limt_>ooTSC(5^*^) < TSC(5).

Proof. As 5 G TSC does not have a global minimum at S. Hence by theorem 7
given any e > 0 there exists S' G B[S,€] such that TSC(5') < TSC(5). If we
start the MMSE iteration with 5^°^ = S', as TSC(5 '̂l) is non-increasing, we get
limt_oo TSC(5(')) < TSC(5') < TSC(5). •

On the other hand, if a configuration S achieves the minimum of TSC, then if
we start the MMSE iteration from any configuration close enough to 5, the TSC
converges to TSC(5) as t 00.

Lemma 18. Given S eU there exists e > 0 such that for all S' E B[S, e] the MMSE
iteration with 5^°^ = S' satisfies limt^ooTSC(5^^^) = r.
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Proof. Follows from the fact that Tf is finite and TSC is continuous. •

Hence the only stable equilibria of the MMSE update are the optimal configura
tions.

10 Noisy MMSE iteration

Our last observation on the TSC is key to understand the convergence of the MMSE
iteration. We will next slightly modify the MMSE update algorithm adding noise.
To this end we first make some definitions. Given two unit-norm orthogonal vectors
vij V2 (ui, V2 € with V1V2 = 0) and an angle6, let 0) denote the rotation
of vi of angle 9 towards V2:

h{vi ,V2,0) = cos9vi + sin 6v2 (57)

Analogously, given S,Re S with s^rk = 0 for all A; € {1,...,K}, and 9 E let

h{S,R,9) = [ h(si^ri,9i) ... h{sKiTK,9K) ]

Given a sequence of angles {^max}£i C (0,27r), we define the MMSE noisy iter
ation as:

(58)

where (A: € {1,..., A'}, t GN) are independent random variables, 9^^^ is uni
form (0,9max) and is a random unit-norm vector uniformly distributed orthogonal
to the A:-th column of $(5 '̂~^^). In words, the MMSE noisy update consists of ap
plying the MMSE update (13) to all the signatures one at a time, and then adding
a random bounded independent noise to each signature.

We now present an intuitive argument to be formalized in the next theorem.
We have proved in section 7 that the (noiseless) MMSE iteration approaches the
set of fixed configurations as t > 00. In section 9 we have seen that TSC has no
other local minima than the global one. Hence, if we start with any configuration
that does not attain the global minimum of TSC and perturb it a little, there will
be a nonzero probability of getting a new configuration with a lower TSC. This
observation suggests that if we fix a sufficiently small noise upper bound in the noisy
iteration, 5"^*^ can be made to converge to an arbitrary small neighborhood of the
optimal set with probability one regardless of the initial configuration.

Theorem 8. Given any 6 > 0 there exists 9max > 0 5uc/i that for any initial condition
the MMSE noisy iteration defined by (58) with 9max = 9max for all t, satisfies

limsupTSC(5 '̂̂ ) <a.8. r + J (59)
t-¥00

Proof. Without loss of generality assume 5 is small enough so that if 5 G and
TSC (5) < r + 5 then TSC (5) = r. This can be done because, by theorem 2
the set Tp has a finite number of elements (recall equation (33)). Define the sets
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Vi = {S eS: TSC{S) > r + 5} and F2 = {5 G 5 : TSC(5) < r + 6}. As TSC(-)
is continuous, Vi and V2 are compact sets. If Vi = 0, then (59) is trivially satisfied.
Hence in what follows we assume Vi 7^ 0. Let

Omax = inin{d(5,S'):SeVi, S'€ <>(^2)}

Note that 9max is well-defined: d(-, •) is a continuous function, Vi is a compact set,
V2 is compact and thus $(V2) is compact because is continuous.

We claim Omax > 0- To prove this by contradiction, assume 9max = 0- Then there
exist S €Vi and S' G ^(V2) with d(5, S') =0. So S = S' and hence TSC(S) > r+ 5
and S = ^{S") for some S" G V2. Therefore TSC(5") < r + 5 and we get

t-\-6< TSC(S) < TSC{S") <T-{-S

and so TSC(5) = TSC(S"') = r + 5. By (16) this implies S = S" and thus S G
But then, by our assumption that S was small enough, we must have TSC(5) = r
which contradicts TSC(S') = r + S.

Because of our choice of 9max, if ^ V2 tben G V2 and thus G V2
for all m > 0.

For each S €S define

/3(5) = min{TSC(5') : S' GB[S,9max]}

Note that P{S) is well-defined because TSC is continuous and B[Sj9max] is compact.
Also p{S) is a continuous function of S because TSC(*) is continuous and the set
•B[5,9max] depends continuously on 5. Now define

7 = min{TSC(5) - P{S) : 5 G VJ

which is well-defined because (TSC —/3)(-) is continuous and Vi is compact.
We claim 7 > 0. To prove this by contradiction assume 7 = 0. Then for

some 5 G 14 it is ^(S) = TSC(5). But this means that 5 is a local minimum of
TSC(-). Thus, by theorem 7, S must be a global minimum of TSC(-) and therefore
TSC(5) = T which contradicts 5 G Vi.

We will write Pr(') for probabilities. For 5 G «S define

P{S) =Pr (tSC(/i(#(5), R, 6)) <max {tSC(5) -
where r^, 9k, A; G{1,..., A"} are independent random variables, 9k is uniform (0,9max)
and rk is a random unit-norm vector uniformly distributed orthogonal to the k-th. col
umn of ^(5). Note that P(S) is a continuousfunction of S because TSC(-), <&(•) and
h(',R,9) are continuous and the probability distributions involved are continuous.
Let

p —min P(S)
sevi

We claim p > 0. To prove this by contradiction assume p = 0. Then there exists
S eVi such that P{S) = 0. Consider two cases:
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• Assume $(5) € Vi. By definition of 7, there exists S' e such
that TSC($(5)) - TSC(50 > By continuity of TSC(-) and as the prob
ability density of h{^(S),R,9) is not identically zero in any open subset of

this implies

P(S) > Pr(TSC(M$(-S),/i,e))<TSC(5)-|)
> Pr (tSC(/i($(5), R, e)) <TSC($(5)) - |) >0

which contradicts P{S) = 0.

• Assume $(5) ^ Vi. Then TSC($(5)) < t 6 and thus by continuity of
TSC(-) and as the probability density of /i(^(5), R,9) is not identically zero in
any open subset of jB[^(5),9max]i we have

P{S) > Pr(TSC(/i(^(5),i?,^))<T + (5)>0

which contradicts P(S) = 0.

Define M = Pit + • Note that V5 € <S, TSC(5') < M. Let

Q = Let Et denote the event that TSC(S'(*)) € Vi (i.e. that TSC(5(*)) <
r -t- 5). Write Zm = Pr (Rgm)- Then

-2^171+1 ~ 2f,7iPr (^Q(ni+l)| pQm^ " •2^m)Pr (^Q(yn+l)| pQm^

We have argued before that Et C Et^i. Therefore Pr (£7q(,„+i)| Egm) = 1 and

^m+l ~ (1 2?m)Pr (^g(m_|.i)| Eq^

Let Ft denote the event that TSC(iS^*^) < TSC(5(*~^^) — and let Gt = UFt
(i.e. Gt is the event TSC(5^*^) < max{TSC(5^^~^^) — -H (J}).

We claim that Gg^+g C Eg(^+i). To see this, note that

Q Q

nfl ^Qm+q — n [(-^QCm+l) ^ P'Qm+q) U(-^Q(m+1) ^ ^Qm+q)]
q=l q=l

Q

~ n {^Q{m+l) ^ PQm+q)
q=l

Q

~ Eq^rn+l) ^
9=1

= 0

where the last equality follows from the fact that if TSC(5^'"'^') < TSC(5 '̂"" '̂~^) —
5 for all g € {!,...,Q}, then TSC(5<3("»+i)) < TSC(5^"») - < t + S (i.e.
n^l PQm+q CEQ(jn+l))'
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Therefore

Pr (-E^Q(m+l) Î Qm) ^ ffl ^Qr^+q
\q=l

JpC
^Qm

— Pr {CrQin-^-q \ Gqiti+I^ •*•j^Qm+q—ly ^Qm)
q=l

By the definition of p, for all qwe have Pr {GQjn+q\ Gqm+i, •••?Ggm+q-u ^Qm) ^
p. Hence

Pl{EQ^m^l)\E'Qj>P^
and

^m+l ^ "1" (1 ^m)P^
Therefore 1-Zm+i < {l-Zm){l-p^) and by induction l-Zm< (l-zo) (l - P^)"" <
(1 -p^)"". I.e. Zm>l- (l Now

Pr I U -E^Qm I = iim Zm>l- hm (l - P^)"^ = 1I V_/ ^ I m-^oo m-¥oo
\m=0 /

because Eqm C £^Q(m+i) and p > 0. This implies that with probability 1 for some
finite to, 5^*°^ GV2. Hence 5^*^ GV2 for all t> to, and (59) follows. •

The next theorem shows that if 9max is chosen suitably with —)• 0 as t —>• 0,
then 5^*^ approaches the optimal set Q as f ^00 with probability 1.

Theorem 9. There exists a sequence Omax such that for any initial condition
the MMSE noisy iteration defined by (58) satisfies

lim TSC(5^*)) =a.s. r (60)
t—¥O0

Proof Take a decreasing sequence 6m with lim^^oo = 0, and take any q G (0,1).
Fix any m. By the proof of theorem 8 we can find 9m such that the noisy MMSE
iteration (58) with ffia® = 9m satisfies Pr (TSC(5^*^) < r + (5„i) -> 1 as t -> 00 uni
formly in the initial condition Thus there exists Im such that for all and
all t >Jm, Pr (TSC(5(*J) < t Sm) > q- Let Lm = k- It follows that if we
choose 9^ = 9m for all t = (H-L^-i),..., L„i, we obtain that for all ^ > 0it holds
Pr (TSC(5^ '̂"+^^) <r dm) > 1- (1 - 9)^. This implies limsupt_^ooTSC(5 '̂̂ ) <a.s.
T + 6m for all m. Making m —> 00 we get limsupt_^oo TSC(iS'(*^) <a.s. t. As
TSC(iS'̂ 'l) > T for all t, we get the desired result. •

11 Conclusions

Given a symbol-synchronous CDMA system with fixed number of users, processing
gain, received powers and noise covariance, we considered the problem of assigning
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signature sequences to the users. Two performance measures where proposed, sum
capacity and TSC, and we proved that the optimal configurations for both are the
same. The MMSE iteration is an iterative procedure amenable to distributed imple
mentation that decreases the total square correlation at each iteration. However, it
does not guarantee convergence to the minimum TSC. We have shown that the TSC
has no local minima other than the global, and therefore the fixed configurations of
the MMSE update that are not optimal are unstable. Using this fact we have proved
that a modified noisy version of the MMSE iteration asymptotically approaches the
set of optimal configurations with probability one .

References

[1] P. Anigstein and V. Anantharam. Ensuring convergence of the mmse iteration
for interference avoidance to the global optimum. In 38th Allerton Conference
on Communications, Control and Computing, 2000.

[2] F. Gantmacher. The Theory of Matrices. Chelsea Publishing Company, 1960.

[3] M. Honig, U. Madhow, and S. Verdii. Blind adaptive multiuser detection. IEEE
Transactions on Information Theory, 41(4):944-960, July 1995.

[4] A. Marshall and I. Olkin. Inequalities: Theory of Majorization and its Applica
tions. Academic Press, 1979.

[5] C. Rose. Cdma codeword optimization: Interference avoidance and convergence
via class warfare, submitted to IEEE Transactions on Information Theory, 2000.
Available at http://www.winlab.rutgers.edu/'N^crose.

[6] C. Rose, S. Ulukus, and R. Yates. Interference avoidance for wireless systems.
In Vehicular Technology Conference, 2000.

[7] M. Rupf and J. Massey. Optimum sequence multisets for synchronous code-
division multiple-access channels. IEEE Transactions on Information Theory,
40(4):1261-1266, July 1994.

[8] S. Sastry. Nonlinear Systems: Analysis, Stability and Control. Springer, 1999.

[9] S. Ulukus and R. Yates. Iterative signature adaptation for capacity maximiza
tion of cdma systems. In 36th Allerton Conference on Communications, Control
and Computing, September 1998.

[10] S. Ulukus and R. Yates. Iterative construction of optimal sequence sets to
maximize the capacity of cdma systems, submitted to IEEE Transactions on In
formation Theory, 1999. Available at http://www.winlab.rutgers.edu/~ryates.

[11] S. Verdii. Capacity region of gaussian cdma channels: The sjnnbol-synchronous
case. In 2jith Allerton Conference on Communications, Control and Computing,
October 1986.

36



[12] S. Verdu. Multiuser Detection. Cambridge University Press, 1998.

[13] P. Viswanath. Capacity of Vector Multiple Access Channels. PhD thesis, UC
Berkeley, Department of Electrical and Computer Sciences, 2000.

[14] P. Viswanath and V. Anantharam. Optimal sequences and sum capacity ofsyn
chronous cdmasystems. IEEE Transactions onInformation Theory, 45(6):1984-
1991, September 1999.

[15] P. Viswanath and V. Anantharam. Total capacity ofmultiaccess vector channels.
Memorandum UCB/ERL M99/47, UC Berkeley Electronics Research Labora
tory, May 1999.

[16] P. Viswanath and V. Anantharam. Colored additive noise and capacity ofcdma.
submitted to IEEE Transactions on Information Theory, 2000.

37


	Copyright notice 2001
	ERL-01-24

