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Abstract

Viswanath and Anantharam ([15]) characterize the sum capacity of multi-
access vector channels. For given number of users, received powers, spreading
gain and noise covariance matrix in a code-division multiple-access (CDMA)
system, [15] presents a combinatorial algorithm to generate a set of signature
sequences that achieves the maximum sum capacity. These sets also minimize
a performance measure called total square correlation (TSC).

Ulukus and Yates ([10]) propose an iterative algorithm suitable for dis-
tributed implementation: at each step one signature sequence is replaced by
its linear minimum mean square error (MMSE) filter. This algorithm results
in a decrease of TSC at each step. The MMSE iteration has fixed points not
only at the optimal configurations which attain the global minimum TSC but
also at other configurations which are suboptimal. [10] claims that simulations
show that when starting with random sequences, the algorithm converges to
optimum sets of sequences, but gives no formal proof.

We show that the TSC function has no local minima, in the sense that given
any suboptimal set of sequences, there exist arbitrarily close sets with lower
TSC. Therefore, only the optimal sets are stable fixed points of the MMSE
iteration. We define a noisy version of the MMSE iteration as follows: after
replacing all the signature sequences one at a time by their linear MMSE filter,
we add a bounded random noise to all the sequences. Using our observation
about the TSC function, we can prove that if we choose the bound on the noise
adequately, making it decrease to zero, the noisy MMSE iteration converges
to the set of optimal configurations with probability one for any initial set of
sequences.

*This research is supported by EPRI/DOD Complex Interactive Networks under contract num-
ber EPRI-W08333-04, NSF ANI 9872764, ECS 9873086 and IIS 9941569



1 Introduction and previous work

We consider the uplink of a symbol-synchronous CDMA system. An important
performance measure of such system is the sum capacity, the maximum sum of rates
of the users at which reliable communication can take place. If we fix the processing
gain, number of users, and received user powers, we can regard the sum capacity as
a function of the signature sequences assigned to the users. We will refer to such an
assignment as a “configuration” of signature sequences. A signature sequence will
be modeled as a unit-norm real vector of dimension equal to the spreading gain.

The capacity region of a symbol-synchronous CDMA channel was first obtained
in [11). Later [7] characterized the maximum sum capacity of a CDMA channel
with white noise and equal user received powers. In [14] the case of different user
received powers was solved using majorization theory. [15] also considers the case of
asymmetric received powers with colored noise, and gives a recursive algorithm to
construct an optimal configuration of signature sequences.

Another performance measure of the CDMA channel is the total square correla-
tion (TSC). An iterative procedure called MMSE iteration, in which at each step
one signature sequence is modified in a way such that TSC is non-increasing, was
proposed in [9, 10]. Another iterative procedure with the same property is proposed
in [6]. These algorithms are suitable for distributed implementation. The main idea
is that the receiver for some user would periodically decide on an update for the sig-
nature sequence of that user and communicate it to the user through some feedback
channel. The user transmitter would then switch to the new signature sequence.
When these algorithms are applied, TSC is non-increasing, but there is no guarantee
that the TSC will converge to its minimum possible value. Nevertheless, simulations
suggest that when the initial signature sequences are chosen at random, the iteration
converges to the minimum of TSC. A modification of the algorithm of [6] is pro-
posed in [5] in order to guarantee convergence to the optimum TSC value. However,
the modified algorithm has increased complexity and is not suitable for distributed
implementation.

We will define a modified version of the MMSE iteration adding noise and prove
almost sure convergence of the TSC to the global minimum. A short version of the
results herein was presented in [1].

2 Outline

The rest of this report is organized as follows. In section 3 we present the CDMA
channel model used. Section 4 obtains the linear MMSE filter. In section 5 we define
the majorization partial order on R* and state some results that will be used later.
In section 6 the two performance measures used, sum capacity and TSC, are defined
and basic properties are observed. Section 7 presents the MMSE iteration. The
fixed configurations of this iteration are characterized, and we prove that the MMSE
iteration asymptotically approaches the set of fixed configurations. In section 8 we
state the recursive algorithm of [15] which obtains the maximum sum capacity and a



configuration of signature sequences attaining it. We give a proof of the optimality
of the algorithm which is different from the one in [15] and is useful later. In the
process, we prove using results of section 6, that the optimal configurations that
maximize sum capacity are the same that minimize TSC. In section 9 we observe
and prove that TSC has no minima other than the global minima. Motivated by this
result, in section 10 we define a modified version of the MMSE update adding noise.
We prove that if the noise bound is chosen adequately, the noisy MMSE iteration
converges to the optimum TSC almost surely regardless of the initial configuration.

3 Model

Consider a symbol-synchronous CDMA system with K users. Let T' be the duration
of the symbol interval and let s; : [0,7] — R represent the signature waveform
assigned to user k, assumed unit-norm in L?[0, T, i.e.

/0 ()t = 1

The received signal at the base station in one symbol interval can then be expressed
as

K
y(t) =) vhezesk(t) +2(1) , t€[0,T) (1)
k=1

Here p; is the power received from user k. The information transmitted by user
k is modeled by the random variable z, having zero mean and unit variance, and
independent of the information transmitted by other users. The noise 2(t) is assumed
a zero-mean Gaussian process independent of the user symbols z,,...,zk.

Let the processing gain be N. The signature waveforms are then constrained to
be of the form

N
Sk (t) = Z sk,n'l/)n (t)

n=1
where {t,(t),...,¥n(t)} is an orthonormal set in L*[0, T, and as sx(t) is unit norm
2,7:1 Si,n = 1. If we write
T
Yn = A y(t)z,bn(t)dt
T
Zn = / Z(t)'(/)n(t)dt
0
we have

K
Yn = Z \/-p_kmksk,n + 2,
k=1



Hence writing sy = [ Sk1 ... Skm ]T,y= [n ... yn ]Tandz= [z22 ... 2~ ]T
we obtain ! .
y= Z VDkZiSk + 2 (2)
k=1
Here s; is a unit-norm (i.e. ss; = 1) N-dimensional column vector corresponding
to the signature sequence of user k .
If we write S=[ s1 ... sk |, D=diag(py,...,px) andz =21 ... zg ]
equation (2) can be rewritten as

T

y=SDiz+ 2z (3)

Because of our assumption on the noise, z is a Gaussian distributed zero-mean
N-dimensional column vector independent of z. We will denote the covariance of
z as E[z2T] = W, a K x K symmetric positive definite matrix. Usually the noise
process z(t) is assumed white. In that case, W is a multiple of the identity matrix
and y is easily shown to be a sufficient statistic for estimating z. Note that if the
noise is not white, then not only the different components of z, but also the vectors
z corresponding to different symbol intervals will be correlated. Moreover, in this
case y is not a sufficient statistic. Nevertheless, we will just consider the model (3)
with an arbitrary symmetric positive definite noise covariance matrix W, and to
compute the sum capacity, the noise vector z will be assumed uncorrelated across
different symbol intervals. The solution of this case of colored noise may provide
insight for the consideration of a system with multiple base stations, where users
communicating with one base station could be modeled as noise at the other base
station.

In the sequel we assume N, K, pi (k € {1,...,K}) and W are given and fixed.
Thus a configuration is determined by the signatures matrix S € S where

S={[31 SK]:SkGSN_IVkG{l,...,K}} (4)

with S¥=! = {s € R¥ : ||s|| = 1} the unit-sphere in RV.

4 MMSE linear filter

A linear filtering of the received signal is represented by an N-dimensional column
vector v, and has output vTy. The MMSE linear filter for user k, which we will
denote vy, is defined as the linear filter that minimizes the mean squared difference
between the information transmitted by user k& (zx) and the output of the filter. Let
us write MSE;(v) = E[(vTy — z4)?]. Then

v = arg ,f?}{:’v MSEi(v)

1Hopefully the abuse of notation of representing with the same symbol the functions of time and
the corresponding column vectors will not lead to confusion.



Now
MSE; (v) = vTE[yy" v — 20T E[zxy] + E[zZ]

Using (3), E[zzT] = I and the independence of z and z we get
Elyy"] = SD:E[zzT)D?ST + SD?E[zzT] + E[z27)D? SE[z2T] + E[z27)
= SDST+WwW
and

Elziy] = SD?E[zyz]
= S D%ek
= /Pksk
where e, is the k-th canonical unit-norm vector in RX. Therefore

MSEj(v) = vT(SDST + W)v — 2/pvT sy, + 1

We see that MSEg(v) is a convex function of v, and to compute v, we can differentiate
the above expression with respect to v and equate the gradient to zero, to obtain

2(SDST + W)v, — 24/pesk =0

Solving for vy:

vk = /Pr(SDST + W)~ ls (5)
Given S and k € {1,..., K} we will write D, = diag(p,-..,Dk—1, Pk+1,- - - PK)
and Sk= [ 8 ... Skg-1 Sk+1 --- SK ]

Another expression for v;, can be obtained from (5) using the known formula 2
(A+BC)'=A"1-A'B(I+CA™'B)"'CcA™!

which holds for matrices A, B, C of suitable dimensions whenever A and A+ BC are
nonsingular. Taking A = Sy DyST + W, B = pysy and C = s} we obtain

_ (SkaS;{ + W)_lkakSZ(SkaS{ + W)_l

T -1 _ T -1
(SDS™+ W)™ = (SeDeS¢ + W) 1+ pesT(SeDkST + W) 15

Hence from (5) we get

Uk = o T . g T -1
+p, D.S;, +W
) 1 k Sk (SkaS,’;r + W) lsk( k& kK ) Sk (6)

Another important property of the filter vy is that it maximizes the output signal-
to-interference ratio (SIR) of user k over all linear receivers ([12]). To see this, note

2This expression can be verified directly multiplying the right hand side by A + BC and simpli-
fying.



that the output of filter v is 35, /Przxv7 sy + vTz. Hence

E[(< v, \/p_k:z:ksk >)2]
E[(< v,y — \/p_kzksk >)2]
Pk(’UTSk)2
> ki Pe (VT sp)2 + vTWo

VT sEstv
’UT(SkaSE + W)’U

SIR% (’U)

Let 9 = (SeDxSf + W)3v. Then
pe” (SuDeSE + W) ~hausl (S, DT + W) o
79
2
Pk (ﬁT(SkaS,’;" + W)—%sk)
13112

SIRk ('U) =

Using Cauchy-Schwartz inequality,
SIRk(v) < ka{(SkaSE + W)-lsk

with equality if and only if & = a(SxDeST + W)~ 25y, ie. v = a(SkDrSF + W)~ 1s;
for some a € R.

5 Majorization

In this section we define the majorization partial order on R*. This order makes
precise the notion that the components of a vector are “less spread out” or “more
nearly equal” than those of another.

Given a € R", the components of a in decreasing order, called the order statistics
of a, will be denoted ay), ..., a. In other words, (afy), - ..,a)) is the permutation
of (ay,...,an) such that ap) > ... > ap.

Given a,b € R*, we say that a majorizes b iff

m m
Zai > Zb, Vme{l,...,n—l}
i=1

=1

n n

E a; = E b,‘
=1 i=1

As a trivial example, given any a € R,

1 n 1 n
(a1, ..., a,) majorizes (; Zai, SR Y a,-)

=1 =1

The following theorem will be useful later.
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Theorem 1. Let H € R"*" be symmetric with diagonal elements hy,...,h, and
eigenvalues Ay, ..., A\n. Then A majorizes h.

Conversely, if \,h € R® and X majorizes h, then there ezists a symmetric matriz
H € R**™ with diagonal elements hy, ..., h, and eigenvalues Ay, ..., An.

Proof. See theorems 9.B.1 and 9.B.2 in [4]. O

In the sequel, given a symmetric matrix H € R**® we will denote A(H) the
vector whose components are the eigenvalues of H in non-decreasing order. Le. if
A1 > ... > ), are the eigenvalues of H, we will write A(H) = (Ay,...,As).

The following lemma will be used later.

Lemma 1. Let H € R™" be symmetric and nonnegative definite and let v € S™!
be a unit-norm eigenvector associated with the minimum eigenvalue of H. Then, for
allp >0 and all s € S*1,

MH + pssT) majorizes \(H + pvvT)
Proof. See [16] or [13]. O

A function f : A = R (with A C R") is said to be Schur-convex iff for all a,b € A
such that ¢ majorizes b we have f(a) > f(b). If —f is Schur-convex, f is said to be
Schur-concave.

Lemma 2. Let g: A & R (with A C R a convez set) be conver (concave). Then
the symmetric function f : A® — R with f(a) = i, 9(a;) is Schur-convez (Schur-
concave).

Proof. See theorem 3.C.1 in [4]. O

Given a set A C R* and an element b € A we say that b is a Schur-minimum
of A if and only if for all @ € A, a majorizes b. Clearly, if f : A = R is Schur-
convex (Schur-concave) and b € A is a Schur-minimum of A, then f attains a global
minimum (maximum) at b.

6 Sum capacity and TSC

In this section we define two important performance measures of a given configu-
ration. Sum capacity (Csum) is defined as the maximum sum of rates at which the
users can transmit and be reliably decoded at the base station. All other parameters
being thought fixed, we will regard Csum as a function of the signature sequences,
i.e. Csum : S = R. It can be shown that ([15])

Coum(S) = %log det (I + W'SDST) = %log det (SDST + W) — %log det(W) (7)

If we use the sum capacity as a measure of performance, an optimal configuration
S € S is one that maximizes Ciypm.



Given S € S, let A = A(SDST + W). Then

N
det(SDST + W) =[] M
n=1
and so
Coum(S) = ; logn — 3 L Jog det(W)
As log(-) is a concave function, lemma 2 implies that Csym(S) is a Schur-concave
function of A\(SDST + W).
We define a generalized total square correlation (TSC) as a function TSC : § = R
with ([5])
TSC(S) = tr [(SDST + W)’] (8)
A motivation for the choice of TSC as a performance measure is the following. First
write

TSC(S) = tr [(SDST)?] +tr(SDSTW) + tr(WSDST) + tr(W?)
= tr [(SDST)?] + 2tr(SDSTW) + tr(W?)
Now SDST = K| pksks{, hence

r[(SDST)?] = Z Zpkpm St Sm)” = Zpk +2 Z Z PiPm(S% Sm)?

k=1 m=1 k=1 m=k+1
and

K
tr(SDSTW) = z DSy W s
k=1
So tr [(SDST)?] is a weighted sum of the interference power “seen” by all users (plus
the constant term Z,f:l p?), and tr(SDSTW) is a weighted sum of the noise power
“seen” by all users. Hence it seems reasonable to use TSC as a performance measure;
the smaller the TSC the better.
Given S € § and A = A(SDST + W), the matrix (SDST + W)2 has eigenvalues

A((SDST+W)?) = (X,...,)3)

and therefore, as the trace of a matrix is equal to the sum of its eigenvalues,

N
TSC(S) = > X2
n=1
As (-)? is a convex function, lemma 2 implies that TSC(S) is a Schur-convex function
of A(SDST + W).

From now on we will focus on TSC. We will prove later in section 8 that the set
{MSDST+W) : S € 8§} has a Schur-minimum element. Therefore, as Csyp, is Schur-
concave and TSC is Schur-convex, the configurations attaining this Schur-minimum
element will achieve the maximum Cj,,, and the minimum TSC. Hence the optimal
configurations are the same whether we use C;yy, or TSC as performance measure.

8



7 MMSE iteration

We would like to obtain configurations that attain the minimum TSC. To this end
we will define an iterative procedure that, starting with some initial configuration,
modifies one of the signature sequences at each iteration in a way that reduces the
TSC.

For a given configuration S € S we will denote the normalized MMSE linear filter
for user k as cx(S). Hence by (5),

1 -
e(S) = — (SDeST+ W) s 9)
\/S{ (SkaS{ + W)— Sk
or equivalently from (6),
c(S) = . (SDST + W) ™" s (10)

Vs (SDST + W) 5
We define the MMSE user & update function as
‘I’k(S) = [ 81 ... 8Sg—1 Ck(S) Sk+1 ... SK ] (11)

which replaces the signature sequence for user k by the corresponding normalized
linear MMSE filter. The following lemma ([10]®) states that this update strictly
decreases the TSC except when the signature sequence for user & coincides with the
MMSE filter.

Lemma 3.
VS € §: TSC(®x(S)) < TSC(S),  with equality iff s = cx(S) (12)
Proof. By direct calculation:
TSC(S) — TSC(2«(S)) =
1
st (SkDkST + W)™ s

Given a symmet;ric lposii:ive definite matrix M and a unit-norm vector v, we claim
that vTMv > %r%-:-z% with equality iff v is an eigenvector of M. To see this apply
Cauchy-Schwartz inequality twice:

2pks',1; [SkaS,f +W - (SkaSZ + W)_l] S

1= (<M%v, M'%v>)2 < IIM%v ’ ”M";‘v |2 = (v Mv) (vT M)
(vTM'lv)2 = ((v, M '0))* < || ||M‘1'u”2 =vT M™%y

with equality in both inequalities iff v is an eigenvector of M, and thus we get the
desired claim. A

Finally we apply our claim above to M = Sy D;ST+W and v = s; to obtain (12).

O

3[10] considers the case of white noise and equal received powers, but the proof holds for arbitrary
noise covariance and received user powers.




Consider the MMSE update dynamics in S:
S = @,,,(SW) (13)

where we define ®; for t > K setting ®; = ®;_x. This corresponds to replacing each
signature sequence using the MMSE update, one at a time. We remark that this
iteration is amenable for a distributed* implementation. The linear MMSE filter for
a user can be implemented blindly ([3]), i.e. without needing knowledge of received
powers or signature sequences of other users.

Note that given any initial configuration S© € S, the sequence TSC(S®) defined
by equation (13) converges because it is non-increasing by lemma 3 and bounded
below.

The MMSE update function is defined as

®(5) = Pk (Px-1(... ®:1(S5))) (14)
Let Fy be the set of fixed configurations of ®:
Fe={S€S:2(5) =S5} (15)

Lemma 4. Let S € S. Then

TSC(®(S)) < TSC(S), with equality iff S € Fy (16)
Moreover, S € Fy if and only if ®,(S) =S for allk € {1,...,K}.
Proof. Let S € S. Applying lemma 3 K times we get

TSC(S) = TSC(®1(S)) = TSC(22(21(S5))) = ...
> TSC(®x-1(. . - 1(S5))) = TSC(2(5)) (17)

If S ¢ Fy, then thereissome k € {1,..., K} such that ®(... ®1(S)) # Px-1(... 21(5)),
and so by lemma 3 TSC(®(... ®,(S))) < TSC(®—1(...®1(S))). Hence using (17)
TSC(S) > TSC(®(95)).

If TSC(S) = TSC(®(S)) then equality must hold in all inequalities in (17). From
lemma 3 we get ®;(S) = S, ®2(®1(S)) = &1(S),..., B(S) = x-1(... ®1(S)). Hence
we obtain S € Fy and also ®,(S) =S forall k € {1,...,K}.

Next we consider the last assertion. If ®,(S) = S for all £ € {1,...,K}, then
clearly S € Fy. Now assume S € Fy. Then TSC(S) = TSC(®(S)), and hence as
proved above ®(S) =S for all k € {1,...,K}. O

The following lemma and theorem provide a characterization of the fixed config-
urations.

Lemma 5. Let S = [sl ... Sk ] € 8. Then S € Fyp if and only if for all
k€ {l1,...,K}, s is an eigenvector of SDST + W.

4Here distributed means that can be implemented in parallel modules with no interaction. The
user receivers are in the base station, hence co-located.

10



Proof. Let S € Fy. We can apply lemma 4 to obtain ¢x(S) = si forallk € {1,...,K}
and hence from (10),
(SDST + W) Sp = )\ksk (18)

[
.

where \; = [s}f (SDST + W) - sk]

Conversely suppose (SDST + W) s, = Agsi for all k € {1,...,K}. Then us-
ing (10) cx(S) = s, hence ®,(S) =S forall k € {1,...,K} and so S € Fj. O

Theorem 2. Let S € Fy. Then

1. There ezists an orthonormal basis of (common) eigenvectors of SDST and W.
Equivalently, matrices SDST and W commute.

2. Letw,,...,wy be the eigenvalues of W, and let {qi,...,qn} be an orthonormal
basis of eigenvectors of SDST and W with Wq, = wngy for alln € {1,...,N}.
There exist L € {1,...,N}, a partition J, ..., . (with possibly some of the
Je empty) of the set {1,...,K}, a partition T, ..., Iy of the set {1,...,N},
and positive real numbers py > ... > p, such that for all £ € {1,...,L}:

(SDST + W)Sk = sk VkE T (19)
(SDST +W)q, = pegn V1 € I, (20)
/\(SDST-i-W) = (Uiyeeeyblyeeeen- yHULy -« -3 AL (21)

Ay [Zzl
pe = l—,h (Z pet Y wn) (22)

kET, neZ;

Spk = 0 VEL€Tp, ko €{l,...,K}\ Tt (23)
{sk: k€ Ty} C span{g,:n €L} (24)

and L, R
TSC(S) =S 7 (Z Pty wn) (25)
e=1 " \xeg, neZ,
where |Zy| is the cardinality of Z,.

Proof. Let L be the number of distinct eigenvalues of SDST+W, and p; > ... > pr
be such eigenvalues. From lemma 5 all s, are eigenvectors of SDST + W, so we

can partition the set {1,..., K} grouping the signatures associated to the same
eigenvalues. Le. if we define for £ € {1,...,L}
Je={ke€{1,...,K}: (SDST + W)si = pesi} (26)

the J; are disjoint, Uj_; Je = {1,. .., K} and equation (19) is satisfied. As SDST +
W is a symmetric matrix, eigenvectors associated with distinct eigenvalues are or-
thogonal and (23) is proved. Consider any ¢ € {1,...,L} with J, # 0. If we write
Sz, = [sk, k € Ji) and Dy, = diag (px, k € Je) it follows

(S7,D3,5%, + W)sk = sk Vk € Jy (27)

11



Multiplying (27) on the right by prsi and summing over k € J; we obtain
(S7,D07,5%, +W)S5,D3,57, = 14S7,D757%,

Hence WS5,D7,5% = 1S7,D357%, — (87,D04,5%,)* is a symmetric matrix, which
implies that W and Sj,D 7,57, commute. As

L

SDST= > S5DgS%,
(=1
Te#0

we see that W and SDST commute. Therefore there exists an orthonormal basis
{a1,...,qn} of eigenvectors of W and SDS7 (see e.g. corollary 3 of theorem 3’ in
chapter VIII of [2]). Hence gi,...,qn are eigenvectors of SDST + W. Now choose
the partition of the set {1,..., N} as follows:

Iy={n€{1,...,N}: (SDST+W)g, = pegn}

Then (20) is satisfied and (21) follows. Fix ¢ € {1,...,L} and let n € Z; and
ke {1,...,K}\ Je. Then g, and s; are eigenvectors of SDST + W associated with
distinct eigenvalues and hence are orthogonal. Therefore

Hedn = (SDST + W)Qn = (S@DQSQ + W)q,,

and S7,D7,57,4, = (tte—wn)gn. By convention we will take Sz, D 7,57, as the N x N
zero matrix when J; = 0. Note that with this convention, the previous equations
hold even for such £’s. If we consider n € {1,...,N}\ Iy, as for all k € J, ¢, and
s are orthogonal, S J,D&S};qn = 0. So we can write

- _ (l-l'f - wn)qn ifne Il
S7.D7S7,4n = { 0 ifne{l,...,N}\Z, (28)

Multiplying on the right by ¢I and summing over all n € {1,..., N} we get

S5.D7.5% =D (tte — wn)aag? (29)

nel,

where we have used the fact that Z,’Ll gngT is the N x N identity matrix because
the g, form an orthonormal basis. For k¥ € J, using the same identity and that s;
is orthogonal to g, for n ¢ Z,, we obtain

N
— T, __ T
Sk= ) GnGnsk = Y Gndrsk
n=1 nel;

which proves (24).

12



Now, as for any matrices A and B of appropriate dimensions tr(AB) = tr(BA),

1 1
tr(S7,D7,5%,) = t1(D%,5%,55,D%,) = Z Dk
keT,

where we have used the fact that the diagonal elements of S7 Sz, are all 1 because
the signatures are unit-norm. Also tr(g,g%) = ¢Xg, = 1, so from equation (29) we

obtain (22). Equation (25) is obtained noting from (21) that TSC(S) = 31, |Ze 13-
O

We remark that the characterization obtained in the proof of theorem 2 may in
general not be the only one satisfying (19)-(25). As an example, let K =2, N = 2,

P =p2 =4, W = diag(1,9) and
11
5=0 o]

Then SDST + W = 9I and hence, by lemma 5, S is a fixed configuration. The
characterization obtained in the proof of theorem 2is L =1, gy = 9, J1 = {1,2},
7, = {1,2}. Another characterization which verifies (19)-(25) is L = 2, 3 = p2 = 9,
Jl = {1)2}1 \72 = 0) Il = {1}p I2 = {2}

The characterization obtained in the proof of theorem 2 is clearly the most eco-
nomical one in the sense that L is as small as possible (because all u’s are distinct).
However we will find it convenient to use the characterization of the fixed configura-
tions as in the following lemma.

Lemma 6. Let S € Fy. Then there exists a characterization as in theorem 2 satis-
fying equations (19)-(25) that also verifies the following for all £ € {1,...,L}:

1. If 7o # 0 then |To| > |Te| and for all n € Ty, pe > wy.
2. If o= 0 then |Ty| = 1.
3 If¢ <L and J; # 0 then pg > pes1.

Proof. Take the partitions in the proof of theorem 2. Consider any ¢ € {1,...,L}
with Jp # 0, and any n € Z,. From equation (28),

SJIDJtS}LQn = (e — Wn)gn

As Sj,D 4,87, is nonnegative definite, f1y > wy.

Assume p; = w,. Then Sz,D7S5%q, = 0. This implies ¢t S7,D75%,¢, =
1 2
“D}lS‘%qn” = 0 and hence, as Dy, is invertible, S’}}tqn = 0. Therefore, g, is

orthogonal to the signature sequences of all users in J;. Define:

J =0
I = Je
I, = {nely:pp=wn}

Iy

{nGIg:ue>wn}
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Note that |J)'| > |Z;| because {g» : n € I;} are orthonormal eigenvectors of
SayDgy ST y associated with nonzero eigenvalues, and hence Sy has rank |Zj| and
|77'| columns.

A new characterization satisfying (19)-(25) (with L increased by |Z;|) is obtained
by dividing (J¢, Z¢) in |Z| + 1 parts: (J;',Z;) and for each n € Z;, (J7', {n}).

If we do the same for all £ for vs:hichh there is at lgast one n € T, with w, = e,
we obtain the desired result. Let L, (A,...,J;), (ZTv,..-»Z;), i1 = ... 2 i be
the new characterization. Note that in our construction given any A there can be
at most one £ with J # 0 and j = A. Hence condition 8 is satisfied ordering the
partitions so that if jip = 41 then J = 0. O

Given S© € S we can define the w-limit set ([8]) with respect to the dynamics
(13) as:
we(SN ={SeS:3t; <t <...st lim St =5} (30)

m—00

In words, we(S©®) is the set of all limit points of the trajectory S®).
The following lemma shows that for any initial set of signature sequences, the
MMSE iteration (13) converges to the set of fixed configurations.

Lemma 7. Given any S© € S,
we(S®) C Fp (31)

Proof. If S € wy(S©®) then 3t; < t2 < ... s.t. limpyye S = S. For some k €
{1,...,K}, tn is a multiple of & for infinitely many m, let ¢,, be the corresponding
subsequence. Then S(tm) — § as m — co. By continuity of @41, Pryr(Stm)) —
Di1(S) as m — oo.

Now assume ®;,1(S) # S. Then by lemma 3, TSC(®x+1(S)) < TSC(S). Let
A = TSC(S) — TSC(®x41(S)). Then, as TSC is continuous, there exists p such that
¥m > p it is TSC(S®+V) < TSC(Stn)) — 2. Thus TSC(S=+)) < TSC(Stm)) - 2
for p > m and therefore TSC(S®m)) — —co as m — oo. This is a contradiction
because TSC is positive, and thus ®441(S5) = S.

But then ®p;(St)) = Stmt) — ®,,,(S) = S as m — oo. Recurring to the
same argument as before we now get ®;,2(S) = S. Repeating this argument (K —2)
more times we get ®(S) = S as we wanted to prove. O

We conclude that for any initial condition the MMSE iteration approaches the
set of fixed configurations as ¢ — co. As TSC is a continuous function, this implies
that lim;_,.c TSC(S®) € Tr where

Tp = {TSC(S) : S € Fy)} (32)

Note that from theorem 2, Tr has a finite number of elements because there is a finite
numbei of ways of partitioning the sets {1,..., K} and {1,...,N}. A loose upper
bound on |Tr| can be found by noting that for a given L, there are less than LN ways
of partitioning the set {1,..., N} in L subsets: for each element in {1,..., N}, we
can choose one of the L subsets in the partition to put that element. Analogously,
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there are at most L¥ ways of partitioning the set {1,..., K} in L subsets. Hence,
asLe{l,...,N},

N
ITr] <) L¥HY (33)

L=1
Let 7 be the minimum of the TSC:

r = min TSC(S) (34)

As S is a compact set and TSC is continuous, the minimum is attained and we can
define the set of optimal configurations:

Q={S€S:TSC(S) =7} (35)

Clearly we have Q C Fp: if S € Q then 7 = TSC(S) > TSC(®(S)) and by lemma 4
TSC(S) < TSC(®(S)), and therefore TSC(®(S)) = TSC(S) which again by lemma 4
implies S € Fy. But it is easy to see that Fp contains non-optimal configurations,
i.e. Fp # Q except for the trivial case N = 1. As an example take N > 2 and let
w; < ... < wy be the ordered eigenvalues of W, and ¢;,...,gn be an orthogonal
basis of associated eigenvectors. Then, if we take s, = gy for all k € {1,..., K}
we obtain a fixed configuration S € Fs. It is easy to see that if s} = ¢, and
s, = gy for k € {2,...,K}, the new configuration S’ attains a lower TSC value:
TSC(S') < TSC(S). Hence S ¢ Q. Actually, S attains the global maximum of the
TSC over S.

Therefore, for N > 2, the set Tr has more than one element and we cannot
conclude that lim;_,o, TSC(S®) = 7 as we would like. Simulations suggest that if
the initial condition S© is chosen randomly, then TSC(S®) converges to 7 with
probability one ([10]), but no formal proof has been given.

8 Global optimal configurations

We have seen in the previous section that the global minimum of the TSC over all
configurations S € S is attained for some fixed configuration of the MMSE update
S € Fg, ie.
min TSC(S) = min TSC(S)
SeFg

Ses

Any fixed configuration is associated with a partition of the set of users and a
partition of the set of signal dimensions as shown in theorem 2. Conversely, given
such a pair of partitions, we could try to find a corresponding configuration S € Fp.
This is not always feasible, as the following simple example shows.

Let K =2, N=2,pp =p, =1, wy =3 and w, = 0.2. Consider L = 1,
J1 = {1,2} and Z; = {1,2}. For this partition pair we should have according to
theorem 2 that SDST+W has eigenvalue y; = 2.6 with multiplicity 2 (i.e. SDST+W
is 2.6 times the 2 x 2 identity matrix). But, being SDST and W symmetric and
nonnegative definite, the maximum eigenvalue of SDST + W has to be at least as
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large as the maximum eigenvalue of W, w;. As 2.6 < 3 we see that it is not possible
to find s; and s, such that SDST + W = 2.6] and hence the proposed partition pair
is not feasible.

The following lemma characterizes the feasible partition pairs.

Lemma 8. Let {q1,...,qn} be an orthonormal basis of eigenvectors of W respectively
associated with eigenvalues w,...,wy. Suppose we are given L € {1,...,N}, real
numbers py > ... > pr, a partition Ju,...J. of {1,..., K} (with possibly some J;
empty) and a partition Ip,..., Ty of {1,...,N} with

He = |Il_d (ZPH‘ an)
kET: neZ,
Then following are equivalent:
1. There ezists a configuration S € S satisfying equations (19)-(25).
2. For each £ € {1,...,L},

M
e > Max ({wn :n €Ty} U {% Z (pf, +wl) : M e {1,...,min(|Z, | Tl)}

m=1

(36)

where pt, is the m-th largest component of (px : k € Jp) and wt, is the m-th
smallest component of (wy, : n € Iy).

Proof.

(1 = 2) Consider any ¢ € {1,...,L}. Using (20) and (24), as {q1,...,qn} is an
orthonormal set, we can obtain as.in the proof of theorem 2 (see (28)),

v (ue—wn)g, fneT,
S.%DJ:Squ"—{ 0 ifne{l,...,N}\Z,

This implies that Sz,D 757, has eigenvalues (in non-increasing order)
A(SJCD.%S%) = (,ue - 'wf, ooy g — wfItl’O’ N ,0,
N-iT|

As S7,D 7,57, is nonnegative definite, all eigenvalues must be nonnegative and
hence p, > max{w, : n € Z,}.

1 1
Consider the | J¢| x| J¢| matrix D}‘S?%S 7, D7, It has the same nonzero eigenval-

PR
ues as S7,D%, D% 5% = S7,D75%, and the diagonal elements are (p; : k € Jp).
From theorem 1 we obtain that

¢ ¢ - ¢ 2
(e — Wi, - -5 e — Wrinqzelaeyr  O5--+»0 ) majorizes (py, ..., Pz,)
|Tel—min(|Z¢|,| Tel)
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where for convenience we have written the eigenvalues and diagonal elements
in non-increasing order. The above majorization relation implies that for all
M e {1,...,min(|Z,|,|TJe|)} we have

M M
Z(m —wh) > prn
m=1 m=1

or equivalently

(2= 1) Fixany £ € {1,...,L}. Define
Ié={n€l'g:m>wn}

From (36) p¢ > wy, for all n € T, thus for n € Z; \ Z; we have py = wy. Also
|Zy| < |Je|. Otherwise we would have

1 |Tel . . 1 |Te .
> — +wl) = — + ) w
“‘-IJA,,;(”"' ) = 17 ,g;f”‘ ,,,2 m

and pe > wfjll +1 hence we would get

I-l'8>|11-—d(zpk+zwn)

keT, nel,

which is a contradiction.

Equation (36) also implies that

(pe — 'wlf, N wfzu,O, ...,0) majorizes (p‘l", e ’przI)
17e|-1Z;)
Hence from theorem 1 we can find a symmetric matrix H, € RWVeIXI7 with
eigenvalues
— (11s — ant R
AMHe) = (e — wi, ... e wiz 0. .-, 0)
|Tel 1T
and diagonal elements (p : k € Jp). As H, is symmetric and has |Z;| nonzero
eigenvalues, it can be written as Hy = V;A, V¥ where A, = diag(py —w, : n €
v . 1 =1
T;) and V; € RV satisfies V]V, = I. Let Sy, = QpA;V D2, where
-1 -1

Qz, = [gn,n € T}]. Now using Q%QI; = I we get S7.S7, = D;?HyD;} has
unit diagonal entries, so Sz, has unit norm columns. For k € J; take s; as the
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corresponding column of Sz,. The columns of S, are linear combinations of
the columns of Qz; and T, C I,, hence (24) is verified. For n € T,

L
(SDST + W)q, = 2 Qz, ArQZ; g + Wntn

= QI;AlQQQn + Wngn
= (ﬂ‘t - 'wn)Qn + Wngn = KeGn

and so (20) and (21) are satisfied. Equations (19), (23) and (25) are readily
verified.

O

Hence the problem of minimizing TSC(S) over S € S is equivalent to minimizing
the expression (25) over all partition pairs that satisfy (36). Next we present an
algorithm proposed in [14] that solves this optimization problem.

Without loss of generality, from now on we will assume p; and w, are ordered so
that p, > p, > ... 2 prand wy S wy <...wp.

Algorithm 1 (A4).
Input K, N, (py,-..,pk), (w,...,wy).

Output L, (tjll)“-)jl,); (Il,...,IL), (,Ul,...,[.LL)
Call syntax

[L1 (tjla“'vjb))(zl’“ ';IL)) (p'l"",l'l‘L)] = A(KyNa (pla' '°1pK)$('wla-“’wN))

Update
1. If N =0 then let L =0 and exit.
2. Let
1 (X N 1 M
{1 = max ({wN’N (Zpk +an) } U {M— Z (Pm +wm) : M €{1,..., min(N — l,K)}})
k=1 n=1 m=1

(37)
3. (a) If uy = wy then:
o Let Jy =0,I, = {N}.
e Call

[L” (.ﬂ,...,Jil),(I{,-.., 2’)’(“1""’”,1/)] =A(K)N— 1:(pl»---:pK)r(wla---,wN-l))
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o Let M =0.
(v) Bise if o = (SIS px + Ty w,,) then:

o Let 71 =1{1,....,K}, T, ={1,...,N}.
o Let L' =0.
o Let M =0.
(c) Elseif py = Z,A,LI (pm + W) for some M € {1,...,min(N — 1, K)}
then:

o Let M be the mazimum such M.
o Let Ty = {1,...,1\‘4},11 = {1M}
e Cuall

(LT T @ T, (s )] = AK =M, N=M, (Pggy1s- - - PK)s (Wigis - - - WN))

4. Let L=L"+1.

5. Forallf€ {2,...,L}, let
te = fg
Jo = JpatM
I£ = 2_1 +M

where Jj_,+ M ={k+M: k€ Ji_,} and analogously forT,_, + M.
6. Exit.

We first state a simple fact about the output of algorithm 1.

Lemma 9. Let

[L, (‘71, ..,.71,), (Il,... ,IL), (p,l,...,uL)] =A(K,N, (pl,...,px),(wl,...,'wN))

Then py 2 ... 2 ur.
Proof. By the recursive nature of algorithm 1, we only need to prove that if L > 2
then p; > po. Note that if yy = % (Zf=1pk + Ef:':l wn) and yy > wy then L =1.
Therefore there are only six possibilities:

e 4y = wy and:

— p2 = wy—1. Then clearly puy > po.

- M2 = (Ek—l Pr+ Z =1 wn) From (37)
(Zpk-'-gw") NIJ1+N]; 1#2

This implies uy > uo.
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-y =%3Y  (pm + wn) forsome M € {1,...,min(N — 2, K)}. From (37)
2 ﬁ z:{:l (Pm + wm), hence py > ps.

o U= ML!ZZLI m + W) for some M, € {1,...,min(N — 1, K)} and:
— po = wy. From (37) uy > wn, ie. p > po.
N
- H2= N+1Wl (Z;;(:Ml-}-l Pk + Zn=M1+1 wn)‘ From (37)

K N
1 M, N - M,
2 N (k-é:l:pk + E wn) =N m + N

n=1

This implies p; > po.
= SMM (4w, forsome M; € {1,...,min(N — My — LK - My)}.

From (37)
Mi+Mz
1 M1 M2
D — - -
S VA VA m2=1 (Pm + W) A A Yo YA
Thus gy > po.

O

As proved in the following lemma, the partitions output by algorithm 1 satisfy
conditions (36) and therefore we can construct a configuration S corresponding to
this pair of partitions.

Lemma 10. Let

[L) (!-71) oo HYL), (Ily ce 7IL)3 (,Uq, R a”L)] = A(K, Na (pl) s ’pK)) (wh R :wN))
There ezists S € Fy such that equations (19)-(25) are satisfied. In particular,
A(SDST-*'W):(HIV-"/"'I) '''''' NI ARRESY 37
#5Y IZel

Proof. We use lemma 8. By the recursive nature of algorithm 1 we only need to
prove (36) holds for py, J1,Z;. It is straightforward to see that

I-"l':ITll'I'(ZPk"'an)

ke nely
and by (37), equation (36) is satisfied for £ = 1. O

Our next goal is to prove that such an S corresponds to a vector of eigenvalues
of SDST + W which is a Schur-minimum of the set of vectors of eigenvalues of
S'DS'T + W over S' € S.
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Definition 1. We will say a characterization as in lemma 6 is efficient if for all
¢ < by €{l,...,L} the following conditions are satisfied:

1 |J| < |Za.
2. pr, > Dk, for allky € Ty, and ky € Ty,
8. If Jo, # O then wp, < wp, for allny € Iy, and ny € Iy,.
Lemma 11. The characterization output by the algorithm 1 is efficient.

Proof. Follows directly from algorithm 1. O

Lemma 12. For all efficient characterizations, given any £ € {1,...,L — 1} there
ezist M € {1,...,min(N - 1,K)} and R€ {0,...,N — M — 1} such that

' M R-1
Z .utll-ll = Z(pm + wm) + Z WN-r (38)
=1 m=1 r=0
and
e’
M+R=) | (39)
=1

Proof. Consider any ¢ € {1,...,L — 1}. From (22),

ez;uelld = ez (Z Pt ) wn)

=1 \keJ nel,
Define
e!
J = U
=1
el
I = U T
=1
Then
¢
D uelTl = pe+ D wa
=1 keJ nel
Define

L = {Le{1,...,0}: T # 0}

T = |z

el
I” —_ I\II
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Hence

Z#AIA =) P+ D wat Y wy (40)

keg nex’ nez”

Consider £ € L. As Jy # 0, |Je| > |T¢| (see condition I in lemma 6). As
£ < ¢ < L, by condition 1 in definition 1, |Jg| < |Z;|. Therefore |J;| = |I¢| This
implies | 7| = |Z'|. Let M = |T'| and R = |Z"|. Clearly M + R = |T| = S5, |T4l,
so (39) is verified.

As |J|= M (recall py > ... > pk),

M
Zpk .<_ me

keTJ m=1

Assume the above inequality is strict. This implies that there exist ¥ € J and
m € {1,...,M}\ J with p; < pp. But then k € J, for some ¢; < ¢ and m € 7,
for some ¢, > ¢, which contradicts condition 2 of definition 1. Therefore

Zpk = me (41)

keg

As |7"| = R (recall w; < ... < wy),

R-1
Z wp < ZwN—r

nel" r=0

Assume the above inequality is strict. This implies that there exist n € Z” and
mée€{N-R+1,...,N}\Z" with wy, < wy,. Let 41,4, € {1,...,L} with m € I,
andn € Iy,. Asn € Z", we have {, < ', Jp, = 0 and Z,, = {n} (see lemma 6). Then
Pe, = Wn. Asm € Iy, pe, > wm. Therefore py, > wy, > wy = p,. Hence (recall
pr1> ... > pp) b <¥€p So ¥ty < ¢ and as m ¢ " we must have ¢, € L, i.e. Jp, # 0.
But then by condition & of definition 1 we should have w,, < w,, a contradiction.
Therefore

R-1
S wn=) wy, (42)

nez” r=0
As |Z'| = M (recall wy <... < wy),

M
anzzwm

neZ’ m=1

Assume the above inequality is strict. This implies that there exist n € I’ and
m € {1,...,M}\ Z' with w, > wn. Let &, € {1,...,L} with n € Z,, and
m € I,,. We claim that ¢; < f,. First assume £, < £. Then, as m ¢ I', we have
Je, = 0 and so pg, = Wy < wyp < g, Hence €; < £;. Now assume ¢ > £'. Then also

22



¢, <l because asn € ', £, < £'. Asn € I' we have ¢, € L, so Jp, # 0. But then
by condition & of definition 1 we should have w, < Wy, a contradiction. Therefore

Z Wy, = z Wy (43)

neZ’ m=l1
Now (38) follows from (40), (41), (42) and (43). O

Theorem 3. Let an efficient characterization (of some S* € Fg) be given by L*,

(T T8, @ I5), pt 2 ..o 2 M-
Then for all S € Fg,

MSDST + W) majorizes (p3, ..., B3, ----- s Blese e s HLe)
N—— D e
Izz1 7.
Proof. Let
A = (U], ey MYy enee s BFey ey hrs)
(w1 I 1! Br | lNL
;| I;.

Consider any S € Fy along with its characterization of theorem 2. For n € Z,, take
An = pe. Le. A, is the eigenvalue of SDST + W associated with g, 5. Then

)\(SDST + W) = ()\[l]; ey )\[N])

We want to prove that A majorizes A*. Assume not. Then there exists V' €

{1,...,N — 1} such that
v 14
Z’\[’"] < Z/\:n

m=1 m=1

Take the smallest such V. Hence Ay < Ay. Take £ € {1,...,L} such that
5| < Vand T, |57 2 V. Define V = T4, |T;]. Forallme {V +1,...,V}
we have A}, = pp = Ay > Ay) = Apm- Therefore

14 \%
S Am < YA (44)
m=1 m=1

Clearly V < N because

N N K N
SAm =Y A= P+ Y wn
m=1 m=1 k=1

n=1

5Note that the components of A* are ordered non-increasing, but the components of A are ordered
according to the noise eigenvalues.
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Therefore £ < L. Hence we can apply lemma 12 to obtain

v ¢
S = Domiz
£=1

m=1

M R-1
z (pm + 'wm) + Z WN-r (45)

m=1 r=0
for some M € {1,...,min(N ~1,K)} and R€ {0,...,N - M — 1} with M + R =
V. Hence by (44),

14 M R-1
Z )\[m] < Z (Pm + W) + Zw;v_,. (46)

m=1 m=1 =0

Now for n € {1,...,N} let v, be the eigenvalue of SDST associated with gy,
ie. Yn = Ap — wy. As D3STSD? has diagonal elements (py,...,px) and the same
nonzero eigenvalues as SDST, from theorem 1

(Yap - - - » Vimin(x,N))y  0s--+,0 ) majorizes (py,...,Pk) (47)
K—min(K,N)

Let Ay C {1,...,N} such that [Ay| = M and 3, 4 " = M Yim- Define
By = {N-R+1,...,N}\ Ay. Clearly |By| < R. Take any subset Cpy C
{1,...,N}\ (Am U Bys) with |Cp| = R — |Bpy|. This is always possible because

{1,...,N}\(AMUBum)| =N — M — |By| =N -V + R— |By| > R — | By|

as V < N.
Now from the definition of Ay, and using (47) we get

M M
o= D It wa) =D N+ Y U2 D Pmt I Wm  (48)

meEApy meAym meEApMm meEAy

As SDST is non-negative definite, 7, is non-negative and therefore A, = v, +w, > w,
for alln € {1,...,N}. Hence

Yo A= Y um

meBpUCH meBpUCH

and from (48),

M
Z Am 2 Z Pm + Z Wm (49)

meApUBMUCy m=1 mEAMUBMUC)

Note that {N — R+ 1,...,N} C (Ay U Bps U Cpy). Define
EM=(AMUBMUCM)\{N—R+1,...,N}
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Then |Ey| = |Am U By U Cy| — R = M. Therefore

R-1 R-1 M
> =Yt Y wmz Y unt > un
meEAMUBMUCH r=0 meEy r=0 m=1
Introducing this inequality in (49) we obtain
M R-1 14
D w2 atun) ) =) X,

meEAMUBMUCY m=1 r=0 m=1

But |Ay UByUCy|=M+R= V, hence

14
Z Am < Z /\[m]

meAMUBMUCM m=1
So we get
14 -V
DI EED I
m=1 m=1
This contradicts (44). Therefore A majorizes A* as we wanted to prove. O

Theorem 4. Given any S € S there exists S' € Fy such that A(SDST + W) ma-
jorizes N(S'DS'T + W).

Proof. Consider any S € S. We will recursively generate a sequence of configurations.
Take SO = S. Given S® we will compute S*+1) as follows. For each k € {1,..., K},

let v € SV~ be a unit-norm eigenvector of S D (SI)T + W associated with the
minimum eigenvalue. Let

S(t+1,k)=[s(lt) 5531 Vi 353_1 sg?

Take any k* € {1,..., K} such that
TSC(SE+1%)) = min{TSC(S¢®) : k € {1,...,K}}

and define S+ = SUt+147)
Applying lemma 1 with H = S,(:.)Dk. (S,(ct.))T + W, v = v and s = sg- we obtain

MS®D(S™)T + W) majorizes M(SHVD(SENT + W) (50)

Also for any k € {1,..., K}, we can apply lemma 1 with H = S,(f)Dk(S,(f))T+W,

v = v, and s = ¢(S) (i.e. s is the normalized MMSE linear filter for user k) to
obtain

AM@:(SD)D(®1(S®))T + W) majorizes A(S¢+1¥) D(SEHLNT 4 W)
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and therefore as TSC(:) is Schur-convex, TSC(S¢t+14)) < TSC(®x(S®)). Hence for
allk € {1,...,K},
TSC(S*+V) < TSC(®«(S®)) (51)

As S is a compact set, there exist S’ € S and a subsequence {S¢m)}2_, such
that limp—,e S®») = S’. By continuity and transitivity of the majorization relation,
equation (50) implies

A(SDST + W) majorizes A(S'DS'T + W)
Take any k € {1,...,K}. Then from (51) for all k € {1,..., K},
TSC(Stm+)) < TSC(St+) < TSC(®x(S))) < TSC(S)) (52)

where the first inequality follows from (50) because TSC(-) is Schur-convex and the
last one from lemma 3. Letting m — oo in (52), by continuity of TSC(-) and ®(-)
we obtain

TSC(S') = TSC(®x(S"))

and hence by lemma 3, S’ = ®,(S’). As this holds for all ¥ € {1,...,K}, we have
S' = @(5"), i.e. S' € Fp as we wanted to prove. O

Theorem 5. Let
[L‘1 (s7l*a L :\71‘,')1 (I;) LR 11;,‘)’ (/—l'tv LR au;,‘)] = A(Ka Na (pl, ce )pK)1 (wl" .. )wN))
Then for all S € S,

MSDST + W) majorizes (},... 45, ...... T T

IZ71 1Z7.1
Proof. Take any S € §. By theorem 4 there exists S’ € Fp such that
A(SDST + W) majorizes A(S'DS'T + W)
By lemma 11 and theorem 3 we obtain

MS'DST + W) majorizes (ut, ..., 15, ... .. ey ey e
( ) maj (K15 17 53 Kis)

1Z31 1Z3.1
Hence by transitivity of the majorization relation,

A(SDST + W) majorizes (4, ..., us,...... s MEayenny UTe
( ) maj (B1;. - 1 3 K1)

Izl IZ5.
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Corollary 1. Let
[L*’ (‘71*’ e 7J£')’ (I:’ M "I}{,‘)) (u:! .. "I“'Z')] = ‘A(K7 N’ (1"]‘», A 7pK)’ (wl’ e ?wN))

Then
(7P T, s MLy ey M)
IZ31 1Zz-1

is a Schur-minimal element of the set {\(SDST + W) : S € S} and

L-
. _ "2
min TSC(S) = ;IIZI(W)
1 & 1
max Coum(S) = 3 2 7z | log(u) — 5 log det(W)

Proof. Follows from theorem 5 and lemma 10 because TSC is Schur-convex and Ciym
is Schur-concave. O

9 Local minima of TSC

In this section we will prove an important property of the TSC function: that it has
no local minima other than the global minima. To state this formally, let us first
define a metric on S. Given S, 5’ € S, we define the distance between S and S’ as
the maximum over the users of the angle between the two signatures assigned to the
user:

d(s,S') = Jmax arccos(sy s}, (53)
Note that the triangle inequality holds: given S,5',5" € S,

d(s,s") = Jnax arccos(sy sy) < Jnax [a.rccos(s’{s;,) + arccos(s'zs',é)]

< max arccos(ss i) + Jnax arccos(s's s¥) = d(S, S") + d(S', S")

and hence d(-, -) is a metric. Given S € S and 8 € (0, 7] let B[S, 8] be the closed ball
of radius @ centered at S:

B[S,0)={S'e€ §:d(5',5) <6} (54)
In order to state the main result of this section, we will proceed with some lemmas.

Lemma 13. If TSC has a local minimum at S € S, then for allk € {1,...,K}, s
is an eigenvector of SyDyST + W associated with the minimum eigenvalue.

Proof. Assume there exists k € {1,..., K} such that s; is not an eigenvector as-
sociated with the minimum eigenvalue of (S;yDrSt + W). Let A be the minimum
eigenvalue of (SxDyST + W) and let v be a unit-norm eigenvector associated with A.
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Consider any ¢ € (0, 7) and take S’ with s, = s,,, for m # k and sj, = as;+Bv, where

a = cose and B8 = —asfv + sign(sfv) \/ 02 (sTv)’ + 1 — a2 This is valid because
s'Ts, = o+ B*+2afsTv = 1. We see that Bsfv > 0 and thus s{s, = a+Bs;v >
and d(S, S') = arccos (sfs},) = e. Direct computation shows:

TSC(S) — TSC(S') = 2pe(1 — ) [T (SkDiST + W) s, — A] (55)

As (SkaS,Z" + W) is a symmetric matrix with minimum eigenvalue A and s is not
an eigenvector associated with A, st (SeDkST + W) s, > X. Also 1—a? =sin?e >0
and therefore TSC(S) > TSC(S’). Hence there are configurations arbitrarily close to
S which attain a smaller TSC. This implies that TSC does not have a local minimum
at S. As this followed from assuming that s; is not an eigenvector associated with
the minimum eigenvalue of (S;DyS? + W) for some k, the lemma is proved. a

Corollary 2. If TSC has a local minimum ot S € S, then S € Fp.
Proof. Apply lemmas 13 and 5. 0

By corollary 2 all local minima of TSC are fixed configurations of the MMSE
update. Hence in what follows, we can associate with each local minimum of TSC
the characterization of lemma 6. The next three lemmas, which use the same ideas
as in [5], present necessary conditions on this characterization for a configuration to
be a local minimum of TSC.

Lemma 14. Let TSC have a local minimum at S € S and consider the character-
ization of lemma 6. Then given {y,€y € {1,...,L} with py, > pe,, k1 € Jp, and
ke € Jo, we must have pg, > Pk, .

Proof. Assume not, i.e. pr, < pg,- Consider any ¢ > 0 and let o = sine and
B = —%a. Take S’ with s}, = s; for k ¢ {ky, ka}, s}, = V1 — a?sy, + asi, and

8k, = v/ 1— B2k, + Bsy,. This can be done because sy, is orthogonal to s, and
therefore [|s} || = ||s},|l = 1. Then

S'DST = SDST + A
where
A= (ﬁzpkz - azpkl) (Skls{, - skzs’llc;)"'(pkla v1- a? +pk2:B V 1- /32) (skxsz; + skzs{;)

Hence TSC(S") = TSC(S) + 2tr((SDST + W)A) + tr(A2). Using (19) and (23) we
obtain:

TSC(S) — TSC(S') =
2 [(m, — pe,) (@®pr, — Bpr,) — (Ppr, — Bpi,)” — (Pk; avl—a?+p,pfv1— 52) 2]
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Now replace for 8 = —Z—:La and a = sine¢, and observe that
2

TSC(S) — TSC(S") = 2 — ;)i ( - ”—) +o(é)

Pk,

As py, > pg, by hypothesis and we have assumed pg, < px,, for small € we have
TSC(S') < TSC(S). Therefore, as d(S,S’) < ¢, there are configurations arbitrarily
close to S with lower TSC. This contradicts the fact that TSC has a local minimum
at S and therefore we conclude pi, > pg,. a

Lemma 15. Let TSC have a local minimum at S € S and consider the characteri-
zation of lemma 6. Then given £,8y € {1,...,L} with Jp, # 0, pe, > te,, M1 € Ty,
and ny € I,, we must have wy, < Wp,.

Proof. Assume not, i.e. wy, > wp,. Define S’ as follows. For k ¢ Jp, U Jp, let
8, = sk. Let oy, s be real numbers with |o;| < 1 and |ap| < 1. For k € Jy,, we
can write g = Gxgn, + Uk, Where a = ¢Z si and vx = (I — ¢n, g7, )sk; and we define
st = 1/1 — a?aign, +010kgn, +vi. Note that this is valid because ||si|| = 1. Similarly,
for k € Jy,, we write s = agn, + s Where ag = g7 s and ve = (I — gn,q7,)sk; and

define s = /1 — a3argn, + Q20kGn, + Vk.
For k € Jp, we obtain:

T
sisk —sesk = {6} (gnydn, — GmiGay) +1/1 — oda (4,07, + G,

+ (\/1 —a?— 1) ax (qn,Up + Vkdy,) + 010k (Gn, Vi + vigl,)

and similarly for k € J,:

skSk — sksk = 040% (dn G, — Gnalny) + 024/ 1 — 0303 (4, Gi, + Gnati,)

+ (\/ 1-a2- 1) ak (q,,,v,f + vkq,ql;) + a0k (qm'u,z‘ + vkqfl)

We claim that

Z Praxvy =0

k€T,
To see this use (28) to write
Yoo = Y pe(I — gnyGE, )5k Oy
k€Te, kedy,
= (I- qqul)Sle DJll 8.77;1 g, = - qﬂlq;{'])(#’tl — Wn, )gn, =0
Similarly, >, i, PrORVE = 0. Using these identities it is straightforward to ob-

tain:
S'DST = SDST + A, + A,
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where
Ay = a2P; (0L, — Gmdn,) + 014/1 — 02P (gn, 4%, + @no0Y,)

Dy = AP (gn, 02, — Gnadr,) + 024/1 — 03Ps (Gn, GF, + GnaGr,)

P = Zmai

ke,

P, = ) pa}

k€T,

Now

TSC(S) — TSC(S') =
—2tr [(SDST + W) (A1 + Ag)] — tr (A3) — tr (A3) — 2tr (A,4,)

and after some manipulation we get:
TSC(S) — TSC(S") = 2(ue, — pe,) (PP — a3Pp) — 2 (3 P2 + o4 P})
+4afa§P1P2 - 40!10!2 \/1 - a? \/1 - OI%P1P2

Hence

TSC(S) - TSC(S’) = 2(/.&@1 - [.ng) (afPl - ang) -2 (Oqu + C¥2P2)2 + 0(”&"3)

where ||a]| = /o2 + o2.
From (28) follows py, = Py + Wy, te, = Pa+wp,. As we are assuming wy, > Wp,,
we have pg, — pg, + Py = P + Wy, — Wy, > 0 and thus we can take a; = —ah

. - Bty —key +P2’
Operating we get:

- 2 —
TSC(S) — TSC(S") = 28 P‘:‘jgosp ‘_(‘:’:' Uns) 4 o(ad)
n ny

By hypothesis J;, # @ which implies (lemma 6) that pp, > wy,, i.e. P, > 0. Also
by hypothesis ps, > pg,. Thus for o small enough we get TSC(S) — TSC(S") > 0.
Hence, as d(S, S") < | arcsin(ay )|, there are configurations arbitrarily close to S with
lower TSC. This contradicts the hypothesis that TSC has a local minimum at S, so
we conclude that w,, < wy,. O

Lemma 16. Let TSC have a local minimum at S € S and consider the characteri-
zation of lemma 6. Let £ € {1,...,L} with g > mingeqy,.. 1) pe. Then |Tg| < |Ze|-

Proof. Assume not. Then there exist 1,4 € {1,...,L} with pg > pe, and |Jp| >
|Z¢,|. Take any n € Zp,. As rank(Sg, ) = |Zy| < |z, |, we can find a column vector

v € RVl such that ||lvf| =1 and S 7, D7,,v = 0. Consider any ¢ > 0 and define S’
with s}, = s for k ¢ Jp, and s} = cos(ax)sk + sin(ax) g, for k € Ji,, where ax = evy.
With this choice, after some manipulation we get:

TSC(S) — TSC(S") = 2€*(ue, — pex) || Dz v|I? + 0(€?) (56)
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So it suffices to make ¢ small enough to get TSC(S’) < TSC(S) and d(S,S') =
emaxkez, |vk| < €. This contradicts the fact that TSC has a local minimum at S.
O

Theorem 6. Let TSC have a local minimum at S € S. Then S has an efficient
characterization.

Proof. Consider the characterization of lemma 6.

Let £ € {1,...,L—1}. If gy > pr, by lemma 14 || < |Ze|- If pe = pr, by
condition & of lemma 6 we have | Jy| = 0 < |Zg|. Therefore condition 1 of definition 1
is satisfied.

Now let £, < £, € {1,...,L} with Jp, # 0. If it were py, = pg,, condition 3
of lemma 6 would imply Jp, = 0. Hence pg > g, Then by lemmas 14 and 15,
conditions 2 and & of definition 1 are satisfied. a

Theorem 7. Local minima of TSC are global. ILe. if TSC has a local minimum at
S €S, then S € Q.

Proof. Assume TSC has a local minimum at S € S. By theorem 6, S has an efficient
characterization. Hence we can apply theorems 3 and 4 to obtain that for all ' € S,

AMS'DS'T + W) majorizes A(SDST + W)
Thus as TSC is Schur-convex TSC(S) < TSC(S’) for all S’ € S, i.e. S € Q. O

Theorem 7 can be rephrased saying that if S € S is not a global optimal config-
uration, then TSC cannot have a local minimum at S. Le. given any S € S\ , for
all € € (0, 7] there exists S’ € B[S, ¢] with TSC(S’) < TSC(S).

Hence theorem 7 implies that all the non-optimal fixed configurations are unstable
equilibria of the MMSE update. If a fixed configuration S does not achieve the
minimum of TSC, then there exist arbitrarily small perturbations such that if the
MMSE iteration is started from these perturbed configurations, the TSC converges
as t — oo to a value strictly smaller than TSC(S). We state this formally in the
following lemma.

Lemma 17. Given S € Fp\Q, for all € > 0 there ezists S’ € B|S, €] such that for
the MMSE iteration with S© = S' we have lim;,o, TSC(S®) < TSC(S).

Proof. As S € Fs\$2, TSC does not have a global minimum at S. Hence by theorem 7
given any € > 0 there exists S’ € B[S, ¢] such that TSC(S') < TSC(S). If we
start the MMSE iteration with S® = S’ as TSC(S®) is non-increasing, we get
lim;_,o, TSC(S®) < TSC(S") < TSC(S). O

On the other hand, if a configuration S achieves the minimum of TSC, then if
we start the MMSE iteration from any configuration close enough to S, the TSC
converges to TSC(S) as t — oo.

Lemma 18. Given S € § there exists € > 0 such that for all S' € B[S, €] the MMSE
iteration with SO = S satisfies lim;_,.o TSC(S®) = 1.
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Proof. Follows from the fact that T is finite and TSC is continuous. 0O

Hence the only stable equilibria of the MMSE update are the optimal configura-
tions.

10 Noisy MMSE iteration

Our last observation on the TSC is key to understand the convergence of the MMSE
iteration. We will next slightly modify the MMSE update algorithm adding noise.
To this end we first make some definitions. Given two unit-norm orthogonal vectors
vy, va (v1,v2 € S¥~! with vTv, = 0) and an angle 8, let h(v,, v, #) denote the rotation
of v, of angle 8 towards vs:

h(vy,v2,8) = cos v, + sin fv, (57)
Analogously, given S, R € S with s{r, =0 forall k € {1,..., K}, and § € R¥ let
h(S,R,0) = [ h(s1,m1,01) ... h(sk,Tk,0k) ]
Given a sequence of angles {8%h:}2, C (0,27), we define the MMSE noisy iter-

ation as:
S+ = p(@(S®), REHY (t+1) (58)

where r,(:), 0,(:) (k€ {1,...,K}, t € N) are independent random variables, 0,(:) is uni-
form (0, 05,‘.2”) and r,(f) is a random unit-norm vector uniformly distributed orthogonal
to the k-th column of ®(S¢-V). In words, the MMSE noisy update consists of ap-
plying the MMSE update (13) to all the signatures one at a time, and then adding
a random bounded independent noise to each signature.

We now present an intuitive argument to be formalized in the next theorem.
We. have proved in section 7 that the (noiseless) MMSE iteration approaches the
set of fixed configurations as ¢ — co. In section 9 we have seen that TSC has no
other local minima than the global one. Hence, if we start with any configuration
that does not attain the global minimum of TSC and perturb it a little, there will
be a nonzero probability of getting a new configuration with a lower TSC. This
observation suggests that if we fix a sufficiently small noise upper bound in the noisy
iteration, S® can be made to converge to an arbitrary small neighborhood of the
optimal set with probability one regardless of the initial configuration.

Theorem 8. Given any d > 0 there exists Oyqr > 0 such that for any initial condition
S© the MMSE noisy iteration defined by (58) with 6, = Omaz for all t, satisfies

lim sup TSC(S®) <, 7+ 6 (59)

t—00

Proof. Without loss of generality assume ¢ is small enough so that if S € Fp and
TSC(S) < 7+ 6 then TSC(S) = 7. This can be done because, by theorem 2
the set Tr has a finite number of elements (recall equation (33)). Define the sets
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Vi={S5€S8:TSC(S) >7+6}and V; = {S € §: TSC(S) < 7+ 6}. As TSC()
is continuous, V) and V, are compact sets. If V; = 0, then (59) is trivially satisfied.
Hence in what follows we assume V; # 0. Let

0oz = min{d(S,5'): SeV;, S € &(V,)}

Note that 6,,,, is well-defined: d(-,-) is a continuous function, V] is a compact set,
V; is compact and thus ®(V3) is compact because ®(-) is continuous.

We claim 8,,,,; > 0. To prove this by contradiction, assume 6,,,; = 0. Then there
exist S € V; and S’ € ®(V,) with d(S,S’) = 0. So S = S’ and hence TSC(S) > 7+6
and S = ®(S") for some S” € V5. Therefore TSC(S") < 7+ J and we get

7+6 < TSC(S) < TSC(S") < 7+ 6

and so TSC(S) = TSC(S”) = 7 + 6. By (16) this implies S = S” and thus S € F.
But then, by our assumption that § was small enough, we must have TSC(S) = 7
which contradicts TSC(S) = 7 + 4.

Because of our choice of gz, if S® € V, then St € V; and thus S¢™) € V,
for all m > 0. '

For each S € S define

B(S) = min{TSC(S') : S’ € B[S, Omaz)}

Note that B(S) is well-defined because TSC is continuous and B|S, Omeg] is compact.
Also B(S) is a continuous function of S because TSC() is continuous and the set
B[S, 0oz depends continuously on S. Now define

v = min{TSC(S) — B(S) : S € 1}

which is well-defined because (TSC — §)(-) is continuous and V; is compact.

We claim v > 0. To prove this by contradiction assume 4 = 0. Then for
some S € V; it is B(S) = TSC(S). But this means that S is a local minimum of
TSC(-). Thus, by theorem 7, S must be a global minimum of TSC(-) and therefore
TSC(S) = 7 which contradicts S € V;.

We will write Pr(-) for probabilities. For S € S define

P(8) = Pr (TSC(h(2(S), R, 9)) < max {TSC(S) - % T+ 5})
where 7, 0k, k € {1,..., K} are independent random variables, 6 is uniform (0, 6,n,z)
and 7} is a random unit-norm vector uniformly distributed orthogonal to the k-th col-
umn of ®(5). Note that P(S) is a continuous function of S because TSC(:), ®(-) and
h(-, R,8) are continuous and the probability distributions involved are continuous.
Let
p = min P(5)

We claim p > 0. To prove this by contradiction assume p = 0. Then there exists
S € V; such that P(S) = 0. Consider two cases:
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e Assume ®(S) € Vi. By definition of v, there exists S’ € B[®(S), Omaz] such
that TSC(®(S)) — TSC(S’) > %. By continuity of TSC(-) and as the prob-
ability density of h(®(S), R,0) is not identically zero in any open subset of
B[®(S), Omaz), this implies

P(S) 2 Pr(TSC(A(2(S), R,6)) < TSC(S) - 1)

> Pr (Tso(h(cb(S),R, 8)) < TSC(®(S)) — %) >0

which contradicts P(S) = 0.

e Assume ®(S) ¢ V4. Then TSC(®(S)) < 7+ ¢ and thus by continuity of
TSC(-) and as the probability density of A(®(S), R, #) is not identically zero in
any open subset of B[®(S), fmaez), We have

P(S) > Pr(TSC(h(®(S),R,0))<71+8)>0

which contradicts P(S) = 0.

2
Define M = (Ei;l e+ N, 'wn) . Note that VS € S, TSC(S) < M. Let
Q = [AM=1=9], Let E, denote the event that TSC(S®) € V4 (i.e. that TSC(S®) <
T+ 4). Write 2,, = Pr(Egm). Then
Zm41 = 2mPr (Equm+)| Bom) + (1 — 2m)Pr (Egum+1)| Egm)
We have argued before that E; C Eyy1. Therefore Pr (Egum+1)| Eqm) =1 and
Zmt1 = Zm + (1 = 2m)Pr (Bqm+1)| Egm)

Let F; denote the event that TSC(S®) < TSC(S®~V) — 1, and let G; = E, U F,
(i.e. G¢ is the event TSC(S®) < max {TSC(S¢t-Y) — 1,7 +6}).
We claim that an=1 Ggm+¢ C Egim+1)- To see this, note that

Q Q

E&(m+1) n n GQm+q = n [(Ecca(m+1) n EQm+q) U (Ef)(m+1) N F Qm+q)]
g=1 gq=1

Q
= [ (Bégmsry N Fomeq)

q=1
Q
= Egm+1) N ﬂFQm+q
g=1
= 0

where the last equality follows from the fact that if TSC(S9™+9) < TSC(S9m+e-1) -
1 for all ¢ € {1,...,Q}, then TSC(SV™+V) < TSC(S9™) — Q% < 7+ 6 (ie

an=1 Fom+q C EQ(m+l))-
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Therefore

O

Pr (EQ(m+1)I EQm > Pr (ﬂ GQm+q

g=1

H Pl' GQm+q I GQm-}-l; AR GQm+‘1"17 E&m)

=)
Q
g=1
By the definition of p, for all ¢ we have Pr (Ggm+ql Gom+1,- - -1 Gomig-1, Bom) >

p. Hence

Pr (Eqma1)| Eom) 2 p°
and

Zm41 2 7+ (1= 2m)p°
Therefore 1 —zmy1 < (1—2m)(1—p?) and by induction 1 -2z, < (1—2z0) (1 - p?)" <
(1—p)™. Le. 2z >1— (1—p?)™. Now

(e o]
Pr(U EQm) =Ji_13;°2m21—7’1i_r)réo(l—pq)m=1

m=0

because Egm C Egm+1) and p > 0. This implies that with probability 1 for some
finite t5, St%) € V,. Hence S® € V; for all ¢ > t,, and (59) follows. m]

The next theorem shows that if 8%, is chosen suitably with 68, > 0ast— 0,
then S® approaches the optimal set 2 as ¢ — oo with probability 1.

Theorem 9. There ezists a sequence 055 such that for any initial condition S©
the MMSE noisy iteration defined by (58) satisfies

Jim TSC(S®) =,5. 7 (60)

Proof. Take a decreasing sequence y, With lim, 00 dm = 0, and take any ¢ € (0,1).
Fix any m. By the roof of theorem 8 we can find 6, such that the noisy MMSE
iteration (58) with 6%, = ,,, satisfies Pr (TSC(SW) < 7+ 6m) — 1 as t — oo uni-
formly in the initial condition S(®. Thus there exists [, such that for all S©® and
all t > lm, Pr (TSC(S®) < 7 +6m) > ¢. Let Lm = Y iy li. It follows that if we
choose 0 =8, forallt= (1+Ly-1),- - -, Ly, we obtain that for all z > 0 it holds
Pr (TSC(S®m+:)) < T+ 6,) > 1 — (1 — g)*. This implies lim sup,_,,, TSC(S®) <.
T + 8, for all m. Making m — oo we get limsup, ., TSC(S®) <.s 7. As
TSC(S(‘)) > 7 for all ¢, we get the desired result. O

11 Conclusions

Given a symbol-synchronous CDMA system with fixed number of users, processing
gain, received powers and noise covariance, we considered the problem of assigning
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signature sequences to the users. Two performance measures where proposed, sum
capacity and TSC, and we proved that the optimal configurations for both are the
same. The MMSE iteration is an iterative procedure amenable to distributed imple-
mentation that decreases the total square correlation at each iteration. However, it
does not guarantee convergence to the minimum TSC. We have shown that the TSC
has no local minima other than the global, and therefore the fixed configurations of
the MMSE update that are not optimal are unstable. Using this fact we have proved
that a modified noisy version of the MMSE iteration asymptotically approaches the
set of optimal configurations with probability one .
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