Because of the mismatch between I/O and CPU speeds, high performance computers have long been forced to confront the fundamental I/O bottleneck. As processing power and memory size continue to grow rapidly for micro and mini computers, they too will become I/O limited. A number of hardware and software approaches, such as parallel read-out disks, expanded storage (e.g. solid state disks), and disk striping, have been used to increase I/O bandwidth and thus narrow the CPU-I/O performance gap. In addition, new developments driven by advances in small diameter (i.e., 5.25" and 3.5" disk drives, promise very high I/O bandwidth if large numbers of devices can be organized into arrays of disks. In this paper, we shall review the state of the art in disk devices and I/O controllers, and will describe new approaches for very high performance I/O based on redundant arrays of inexpensive disks (RAIDs).
Title
Disk System Architectures for High Performance Computing
Published
1989-03-01
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
CSD-89-497
Type
Text
Extent
42 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).