Many type inference and program analysis systems include notions of subtyping and parametric polymorphism. When used together, these two features induce equivalences that allow types to be simplified by eliminating quantified variables. Eliminating variables both improves the readability of types and the performance of algorithms whose complexity depends on the number of type variables. We present an algorithm for simplifying quantified types in the presence of subtyping and prove it is sound and complete for non-recursive and recursive types. We also show that an extension of the algorithm is sound but not complete for a type language with intersection and union types, as well as for a language of constrained types.
Title
Optimal Representations of Polymorphic Types with Subtyping
Published
1996-07-01
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
CSD-96-909
Type
Text
Extent
31 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).