This paper describes a framework for controlling autonomous agents. We estimate an optimal controller using a novel reinforcement learning method based on stochastic optimization. The agent's skeletal configurations are taken from a motion graph which contains seamless transitions, guaranteeing smooth, natural-looking motion. The controller learns a parametric value function for choosing transitions at the branch points in the motion graph. Since this query can be completed quickly, synthesis is performed online in real-time. We couple the local controller with a global path planner to create a system which produces realistic motion even in a rapidly changing environment.
Title
Learning to Move Autonomously in a Hostile World
Published
2005-06-01
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
CSD-05-1395
Type
Text
Extent
6 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).