Description
In this thesis, we take inspiration from the Oracle-Guided Inductive Synthesis~(OGIS) paradigm to develop frameworks which can aid in achieving formal guarantees in different stages of an autonomous system design and analysis pipeline. Furthermore, we show that to guarantee the safety of LB-CPS, the design (synthesis) and analysis (verification) must consider feedback from the other. We consider five important parts of the design and analysis process and show a strong coupling among them, namely (i) Robust Control Synthesis from High Level Safety Specifications; (ii) Diagnosis and Repair of Safety Requirements for Control Synthesis; (iii) Counter-example Guided Data Augmentation for training high-accuracy ML models; (iv) Simulation-Guided Falsification and Verification against Adversarial Environments; and (v) Bridging Model and Real-World Gap. Finally, we introduce a software toolkit VERIFAI for the design and analysis of AI based systems, which was developed to provide a common formal platform to implement design and analysis frameworks for LB-CPS.