Reducing power consumption in the Internet infrastructure is receiving significant attention. We propose three schemes for power reduction in network switches - Time Window Prediction, Power Save Mode and Lightweight Alternative. These schemes are adaptive to changing traffic patterns and automatically tune their parameters to guarantee a bounded and specified increase in latency. We propose a novel architecture for buffering ingress packets using shadow ports. We test our schemes on packet traces obtained from an enterprise network, and evaluate them using realistic power models for the switches. Our simple power reduction schemes produce power savings of 20 to 35% with minimal increase in latency or packet-loss. With appropriate hardware support in the form of Wake-on-Packet, shadow ports and fast transitioning of the ports between its high and low power states, these savings reach 90% of the optimal algorithm's savings.
Title
Greening the Switch
Published
2008-09-10
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
EECS-2008-114
Type
Text
Extent
16 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).