[

The High-Level Intermediate Language L

Luigi Semenzato

Report No. UCB/CSD 93-760

/l July 25, 1993

[

| Computer Science Division (EECS)
University of California
Berkeley, California94720

Abstract

L is an extensible high-level intermediate language. Its intended application is
the construction of compiler back-ends and run-time libraries for high-level pro-
gramming languages with complex built-in data structures, such as Hilfinger and
Coldlas FIDIL language. L provides a genera-purpose abstract machine, Basil,
and machinery for extending it. L has been used to define the abstract machine
INFIDEL, described in a separate report. We call L a“high-level” intermediate
language for severa reasons. First, the target machine of L isageneric processor,
or multiprocessor, programmable in C. The “assembly language” used by L is C.
Second, L strivesto be usable both as an intermediate |language and a programming
language. Thetypical extension of L is expected to have alarge run-time library,
alsowritteninL. Many operatorsin the extended abstract machineareimplemented
by function callsto thislibrary.

The High-Level Intermediate Language L

Luigi Semenzato

July 25, 1993

Research supported at UC Berkeley by DARPA and the National Science Founda-
tion under grant DM S-8919074.

Contents

1 Overview 3
2 Badl 5
21 ATingyExample o 6
22 Syntax e e 7
23 VaduesandlLocations. 7
24 Loca Declarations 8
25 Globa Declarations o 9
26 Control Statements. 9
261 LOOPS 9
26.2 Conditionas 10

27 TYPES. . . .o e e 10
271 Universa UnionPointers 10
272 Structures e 10

28 Lists 11
29 Separate Compilation oL 11
210 PureBasil 12
211 DebUgOiNg - - - v o e e e e e 12
2111 SourcePosition 12
2112 Name e 13
212 CaveatsandLimitations 14
2121 Debuggingo 14
2122 Pointer Discipline o oL 14
2123 StaticAnalysis. 15

3 L Extension Mechanisms 16

31 TheLCompiler, 16
311 Phaseso 16

312 TheExpansionPass 17

313 CodeandExtensons. 17

3.2 Opeator Definition L 18
3.3 Usesof the ExpansionMechanism 20
33.1 Conditional Expanson. 20

332 TypesasExpressons 20

3.3.3 CompiletimeEvauation 21

3.3.4 Demand-Driven Constant Propagation 21

4 Reference 22
4.1 Program Structure and Transformation. 22
4.2 Operator Rewriting o 22
4.3 Vaiables, Constants,andBlocks 27
44 TypesandStructureso 29
45 Functionsand Statementso 31
451 Control Statements. 32

452 AsSignments 33

453 Arithmeticoperators 33

46 ListsSo 33
4.7 Compilation L 34

Chapter 1

Overview

L is an extensible high-level intermediate language. Its intended application is
the construction of compiler back-ends and run-time libraries for very-high-level
programming languages, such as FIDIL [HC89]. L provides a general-purpose
abstract machine, Basil, and machinery for extending it. L has been used to define
the abstract machine INFIDEL, described separately [Sem93].

We define L a high-level intermediate language for severd reasons. First, the
target machine of L is ageneric processor, or multiprocessor, programmablein C.
The “assembly language” used by L isC. Second, L strivesto be usable both asan
intermediate language and a programming language. Thetypical extension of L is
expected to have a large run-time library, also writtenin L. Many operatorsin the
extended abstract machine are implemented by function callsto thislibrary.

Thebasic L abstract machine, Basil, isessentialy C with afew additions, most
notably automatic storage management. Basil can be extended as needed by adding
new operators and types.

New operators in the extended machine define functionality not present in
Basil. This functionality can be achieved in two ways. Expressions involving
extended machine operators can be rewritten using the L transformation system;
or they can betranslated to callsto arun-timelibrary.

L is useful when the idea target machine has a large number of primitive
operators and types. L operators are lightweight: they are easy to define and
transform, or implement. The rewriting system issimilar to Lisp macro expansion;
itispowerful but at the same time reasonably simpleto understand and use. Many
type-specific optimizations can be performed during the transformation. A subset
of Basil (also extensible), called pure Basil, is executabl e during compilation, thus

providing a mechanism for compile-time constant folding.

The overhead of learning to write L code or transformationsis small for those
who know C and Common Lisp. The semantics of the primitive abstract machine
Basil are those of C. The syntax is that of Common Lisp. The transformation
system resembles Lisp macros. The programming language used to specify trans-
formationsis Common Lisp.

We introduceL by first describing the Basil virtual machine, and then showing
how it is extended. At the end we include a reference manua for L/Basil. We
assume the reader to be familiar with C and Common Lisp.

Chapter 2
Basll

Basil is a high-level universal assembly language. Roughly speaking, it has the
semantics of C and the syntax of Lisp.

The resemblance to C is dictated by engineering reasons. Basil is trandlated
into C in a straightforward fashion. There are high-quality C compilers available
for every processor on the market today. This is likely to remain true for the
foreseeable future. These C compilers are finely tuned to provide processor-
specific optimizations (such as register alocation) that would be expensive to
reproduce. Many architectural features that do not fit well within the C model
(for example, vector or parallel processing) are easily accessible from C, typically
through architecture-specific language extensions. There is, of course, a partial
or total loss of portability when using such features. Basil makes no attempt to
hide architectura differences beyond what C does. Thisisthetask of the extended
virtual machine. The transformation from the extended machine to Basil is then
machine dependent; but there are so many machine-independent parts that any
other approach is wasteful.

Theuse of Lisp syntax isalso dictated by engineering reasons. The extensions
mechanisms of L involve code analysis and rewriting. It is important that the
visible representation of code closely match theinternal one. It would be difficult
to conceive a more concise syntax than that of Lisp for this purpose. And although
this syntax looks undeniably hostile to the uninitiated, it is simple and consistent,
and it takes surprisingly little training to acquire familiarity with it.

Basil serves not only as atarget language, but a so as a programming language
on itsown, for writing run-time libraries. From this point of view, Basil has acode
transformation mechanism similar to that of Lisp-likelanguages. In most languages

an abstract datatypeisdefined by a set of typesand a set of procedures operating on
objectsof thosetypes. To this, Basil adds type-specific optimizing transformations.
Thus transformation in Basil have a dual purpose: they define the mapping of a
high-level virtual machineinto alow-level one (vertica transformations), and can
optimize library code within the same machine (horizontal transformations). The
transformation system is presented in chapter 3.

Another strong point of Basil is garbage collection. Its availability encourages
a Lisp-like programming style, in which it is convenient to define and manipulate
complex descriptors. Automatic garbage collection is not always the best solution
for large objects, such as those often found in scientific programs; for this reason
the malloc and free primitives of C are also available. The garbage collector
is meant to be used for small objects, typicaly used in descriptors. The two
mechanisms coexist gracefully and with a small distributed overhead.

This chapter attempts to give a concise description of Basil. A complete
description of all available Basil operatorsis given in Appendix B.

2.1 A Tiny Example
A Basil program to compute afactoria looks likethis:

(deflfun (int fact) ((int x))
(return
(if (= x 0)
1
(* x (fact (- x 1))))))

and iscompiled into this C code (or something very similar):

int fact(int x)
{

return x == 0 7 1 : x * fact(x - 1);

¥

TheBasil tranglator attemptsto produce readable C codethat has aclear correspon-
dence to its Basil source: for instance, the name of a Basil variable is preserved,
if possible, in the translation. When a conflict may arise, the name is modified as
little as possible, typically by adding anumeric suffix. Debugging is done directly

on the C output.! Unlike C, expressions and statements may be freely intermixed
in Basil, and blocks may return values.

2.2 Syntax

A Basil expression is either alist, a symbol, or another Lisp object representing
a constant (integer, float, structure, etc.). When it isalist, its first element must
be either a symbol, called the operator of the expression, or a form whose first
element isslambda, which standsfor simple-lambda. Inthelatter case, theformis
equivaent to the result of applying the simple-lambdato the arguments (the rest of
theform), using simple-lambdasubstitutionrules. By theserules, every instance of
aformal in the s1ambda body isreplaced by the corresponding unevaluated actual .
Thisis done with complete disregard of position. For example, in Common Lisp
we have:

((lambda (f x y) (f x y)) 4 56)— (f 5 6)
but in Basil we get:

((slambda (f x y) (f x y)) 4 56) — (45 6)

2.3 Valuesand L ocations

Asin C, certain Basil expressions have a meaning that is context-dependent, and
evaluate either to a location (a container where a value can be stored) or a value
(a data object of some type). Variables are interpretable both ways; so are the
array reference aref and record reference operators. The positions where such
expressions represent locations are the left-hand side of an assignment, a pass-by-
reference argument, and theinitializing expressionin areflet.

Internally, such expressions are disambiguated during expansion. There are
different array reference and record reference operators for the value and the
location case; and variable references are either of theform (ref X), meaning the
location named by x, or (val X), meaning the value contained in that location.

Y1t is possibleto insert debugging information into Basil and haveit passed to the C compiler, but
not convenient to do so manually. The debugging facilities are intended for Basil code generated by
acompiler front-end (see section 2.11).

2.4 Local Declarations

Thelet formisthe mainloca variable-binding construct. It has a syntax similar
toLisp’'slet:

(let ({clause}*) {expression}*)

A clause hasthe form ((typename) [initial-valug]). The general ruleisthat the
syntax of a Basil name-binding form can be derived from the equivalent Lisp form
by replacing name, where name is the entity being defined, with (type name). In
most cases a shorthand is available: using name where (type name) is expected
standsfor (t name), wheret isthe universal union pointer type (see section 2.7).
The precise shorthand rulesfor 1et are:

X — ((tx)
(xe) — (((t xX) e

Thevauereturned by alet formisthe value of thelast expression in the body.
If thelast expression does not produce avalue (has void type), the 1et form does
not have avalue either.

There arethreevariations of 1et: reflet, clet and slet.

A reflet formdeclaresreference constants. They are namesfor assignablelo-
cations, likein C++. Aninitializing expression must be provided for each constant,
and it must beinterpretable as alocation.

The clet operator declares constants. The initidizing expression in each
clause must be present. If the expression has a known value at compiletime, then
the constant is replaced by that value in the body, but only whereiit is useful to do
S0 (see section 3.3.4). Operationsthat change the value of the constant in the body
have unpredictable effects.

The slet operator defines symbol macros. A clause has the structure (name
form) . Occurrences of name in the body are replaced by form.

Local operators are defined with 1oplet and soplet. They are described in
section 3.2, together with their global equivalentsdeflop and defsop. Operators
should be defined freely, not just for extending the virtual machine interface, but
for expressing internal abstractionswhenever convenient.

2.5 Global Declarations

The operators def1fun and def1fun-pure define L functions. deflvar defines
global variables, and defsconstant globa symbol macros. deflstruct defines
structure types (see section 2.7.2). There are also operator-defining operators,
described in section 3.2.

A deflfun form hasthefollowing syntax:

(deflfun (typename) (arg+) expression+)

Each arg hasthesyntax ({val | ref} typename). These shorthandsare avail-
able:

X — (val t X)
(typename) — (val typename)

Unlike Lisp, and rather more like C, a function must use an explicit return
statement to return a value.?

When the operator def1fun-pure isused instead of def1fun, it means two
things. It tellsthe L compiler that the function is side-effect free, or close enough
for our purposes; and it instructsit to compile aversion of the function that can be
executed during compilation. So the function istranslated into Lisp as well as C.
The Lisp version will execute successfully only if the function has been writtenin
pure Basil (see section 2.10). Any call to a pure function whose arguments have
a compile-time constant value results in the function being evaluated at compile
time, and the function-call form being replaced by the resuilt.

2.6 Control Statements

Basil has afew control statements that derive from C, and afew from Lisp. Here
we give abrief overview of them. The reference manual has all the details.

26.1 Loops

The for statement is the one from C. The control variable in a for needs to be
declared separately. The dotimes statement instead is from Lisp, and creates a

2This choiceis not strictly dueto laziness: it helpsin preserving a likeness between L source and
C output, therefore making debugging easier.

new binding for the control variable. The control clause of dotimes may aso
specify under which circumstances the body should be expanded inline. The
loop statement isfrom Lisp, whilethewhile statement isfrom C. None of these
statements returns a value.

2.6.2 Conditionals

The if statement isthe one of Lisp, and may return avalue. When tranglating into
C, the L compiler decides whether to usethe C if or the C conditional expression
(question mark-colon). The case statement is also from Lisp, and may return a
value.

2.7 Types

The types of Basil are those of C, with the addition of the type t, the universal
union pointer. The L programmer can aso define new type expressions (see
section 3.3.2).

A caveat: theL compiler currently does not do any type checking—not count-
ing, of course, that done by the C compiler on the output files.

2.7.1 Universal Union Pointers

Thistypeisused to emul ate the behavior of dynamically-typed Lisp variables. Itis
caled t, which in Lisp denotes the union of al types. In acorrect Basil program,
avariablewith type t contains a pointer to a heap-allocated instance of a structure
defined by a deflstruct form (see section 2.7.2). Such structure instances are
garbage-collected, just asin Lisp.

2.7.2 Structures

The L form deflstruct defines new structure types, similarly to the defstruct
form of Lisp, and the structure declaration of C. Processing this form produces
several new operators related to the structure. As an example, if the structure has
name s and fields x and y, the following operators are defined:

make-s. The constructor function. This function takes two arguments, one for

each dlot in the structure, and returns a boxed instance of that structure (that
is, a pointer to a heap-allocated instance) with its dlots initialized from the

10

argument values. This instance is garbage-collected. The return type of
make-s ist, and the returned value should be stored in avariable, or other
container, of type t, or other typethat is eventually transformed into t.

s-p. The type predicate. It takes a universal pointer as its argument, an returns
trueif the pointer pointsto an object of types.

s-x, s-y. The boxed field accessors. They take a universal union pointer and
return the location of each slot in the boxed structure instance. Thislocation
isinterpreted as a valuein the proper contexts.

s-x*, s-y*. The unboxed field accessors. These are the equivalent of the C
structurefield selectors .x and . y.

A few more operators and Lisp functions are defined for each structure. They are
used to purify Basil code that, for efficiency considerations, is impure, but must
execute at compile time anyhow. They are described in section 2.10.

2.8 Lists

Basil has a few operators to manipulate Lisp-style lists. They have rather pre-
dictable names (cons, 1ist, nconc, append, mapcar, €tc.). The main difference
is that operators likemapcar and mapcan take an operator, instead of a function,
as their second argument. By necessity then al list-mapping operators generate
inline code. The operator may either be asymbol or an slambda form.

2.9 Separate Compilation

A Basil program consists of definitions contained in one or morefiles, aso called
modules. Some modules may use definitions from other modules: for instance,
structure or operator definitions. If in order to process modul e x the compiler needs
information contained in module y, then module y should contain the directive
(need X).

All global entities (global variables and functions) are visible across all mod-
ules, without the need for C-style header files (they are generated automatically).
Section 3.1 describes the compilation process in some detail.

11

2.10 PureBasil

Pure Basil is a subset of Basil that can be translated and executed in Lisp (it is
that subset of Basil that can be easily translated into Lisp—again, an engineering
choice). Its purpose is to avoid having to maintain two sets of source code for
certain routines: one for the run-time library, the other for the compiler.

Of all Basil types, only pointer types are not available in pure Basil (except, of
course, t). Structure types are fully supported, both boxed and unboxed (unboxed
structures are emulated by boxed ones that aren’'t allowed to be shared through
multiple pointers). Array types are also supported.

In some cases of practical significance, onewould liketo take advantage of Cto
implement certain low-level abstractions efficiently using pointer arithmetic. Itis
possible to maintain two separate implementations of these low-level abstractions,
onefor C, theother for Lisp, and usethemin pureBasil code, aslong asthey havethe
sameinterface (see section 3.3.1). Target-specific transformations(target-case)
are useful in this situation. The details of these are given in the reference manual.

2.11 Debugging

Because of the way the Lisp reader works,2 it is not possibleto debug Basil source
code directly. One must use the C debugger on the C output, much in the same
way one would use the assembly-language debugger on C code compiled without
debugging information. My experience has shown that thisisafairly easy task, to
the point that | often prefer to debug the C version of pure Basil functions, rather
than the Lisp version (it's nice to have a choice—Lisp has better printing, but C
has better single-stepping).

When Basil is used as a target language, it is possible to pass debugging
information along. There are two types of information: source-position and name
information.

2.11.1 SourcePosition

Source-position information associates afile name and arange of positionsto Basil
forms. It can be provided in two ways. If the compiler front end iswrittenin Lisp,
the Basil code produced by it is Lisp objects (lists, mostly). Each code object may

3And because| did not have a compelling desire to rewrite it.

12

be associated to a source-position structure. This contains afile name, and a
starting and ending line and character positions. Example:

#s(source-position :file-name '"source.file"
:from-line 10
:from-char 0O
:to-line 12
:to-char 4)

The association is done by thefunction (setf source-position).

If thefront end isnot writtenin Lisp, it can communicatewiththe L systemvia
ASCII text.* The L reader assigns a special meaning to the dispatching character
macro #!. The construct

#! formfl fctl tc

reads as form, and associates to it a source-position structure. The line and
character positionsare given by to fl, fc, tl, and tc. Thefile nameistaken from the
value of the Lisp variable *source-name*, which can be set wherever necessary
with an escape-into-Lisp form (eval).

If the front end does not provide character positions, the syntax

#2! formfl tl

saves space and time.

As the compiler transforms Basil code into C, it attempts to maintain source-
position information as much as possible.

2112 Name

Thename-information Structure associates information to a source name. It has
thefollowing fields:

scope A source-position structure indicating the range of positionsin the
source file for which the association of the name with this structureis valid.
It should benil if the scopeisglobal.

4A binary format could be used for higher efficiency. A format that could make senseis that of a
Lisp fast-load file, even though it is system-dependent, and in most cases not documented.

13

definition A source-position Structure pointing to the definition of this
object.

target-name Thenameused by the front-end to refer to the entity named by the
source name.

other Anassociation list containing other information to be passed to the debug-
ger (for instance, the source type).

Name information is passed to the debugger, possibly after changing the target
name. The function (setf name-information) is used to associate a name-
information structure to a name.

2.12 Caveatsand Limitations

2121 Debugging

None of the facilities described in section 2.11 on debugging is currently imple-
mented.

2.12.2 Pointer Discipline

The implementation of the conservative C garbage collector requires some disci-
pline on the programmer’s side.

The garbage collector considers an object to bein useif it can find a pointer to
the beginning of that object from some memory location that is potentially in use.
Such objects are | eft alone; the others may be reclaimed.

There are two situations in which the collector may recycle objects that the
programmer considers alive. We present them, together with the precautions that
must be taken.

Pointer s to the middle of objects

The first problem occurs when the program allocates an object and subsequently
maintains a pointer to the middle of the object as the only reference to it. The
system assumes that such object is unreachable, and may incorrectly freeit. The
program must maintai n a pointer to the beginning of the object toinsureitssurvival.

In some rare cases, a program may be optimized so that even when it appears
to maintain a variable pointing to the beginning of an object, the variable is dead

14

and its value discarded. This may occur when the only use of the object consists
inwriting and reading values in some location at anon-null offset insideit.

Itis possibleto modify the garbage collector to fix this, but we haven't doneit,
because thissituation is easy to avoid, and the modification would both slow down
the collector and make it more conservative (and therefore |ess efficient).

Manually vs. automatically collected objects

Pointers to a garbage-collected object must always be stored in memory locations
(or processor registers) that the collector will scan during its search for potentialy
in-use objects (the mark phase). The following areas of memory are not scanned:
blocks allocated with malloc (as opposed to malloc-gc), and static data areas
other than those listed in adata structure called the static root table.

Global variables of type t, or other types that may contain t pointers, are
automatically placed in the static root table, so the programmer must be careful
only when using casts. But if for instance the programmer needs temporary space
for a variable-length array of t, it may be unsafe to usemalloc for this purpose,
and malloc-gc should be used instead. In this caseit is a good practice to use
free-gc tofreethetemporary array, instead of | etting the collector reclaimit. This
insures that a pointer to the beginning of the object does not become dead before
the object itsdlf.

2123 StaticAnalysis

The L compiler performs very little static analysis. L programs are (mostly)
statically typed, but the compiler does not check that declarations and uses are
consistent. In most cases typemismatchesresultin errorsduring the C compilation;
in some cases they cause run-time errors and the L compiler aborts. To debug in
these situations, the compiler should be run within an interactive Lisp session.

15

Chapter 3

L Extension M echanisms

L offersaframework for constructing high-level abstract machines. Such machines
can be used as a target for a compiler, or programmed directly. They are built
mainly by adding new operators to the basic abstract machine Basil, described in
chapter 2. To explain how to define new operators, we need first to describe how
the L compiler works.

3.1 TheL Compiler

3.1.1 Phases

The L compiler is organized in phases. Every phase is composed of one or more
passes. Thefirst passis caled the expansion pass; it is followed by zero or more
ad-hoc passes. Each pass takes a piece of L code, and returns it, possibly after
transforming it and producing side effects.

Each phase is named by a Lisp keyword.> The compilation of Basil into C
uses two phases: the :basil phase and the :c phase. Most of the compiling
transformations occur in the expansion pass of each phase. The ad-hoc passes
are reserved for transformationsthat are impossibleor awkward to perform during
expansion.

Basil can be extended by adding operators to the :basil phase, or by adding
a new phase before that. The INFIDEL virtual machine is an extension of the
:basil phase. At this moment we have no experience in adding new phases.

!We use keywords, instead of simple symbols, becausethe former are package-independent.

16

We suggest that part of the FIDIL compiler (theinfamous*“middie end”) could be
implemented as such.

3.1.2 TheExpansion Pass

The expansion pass is where the L compiler does the bulk of its work. Operators
may have an associ ated phase-specific expansion function. Thisfunctionisdefined
inamanner similar to aCommon Lisp macro, and it has similar semantics. During
the expansion pass, each L form is visited, and if its operator has an associated
expansion function, that function is called, passing the form to it. The form is
replaced with the object returned by the expansion function. If thisobject isaform
with a different operator, it is expanded again, if applicable. Then subexpressions
in that form are recursively expanded. This top-down order can be altered by an
expansion function that calls expand directly on subexpressions of the current
form.

As the expansion rules imply, an expansion function may return a form with
the same operator. However, expansion functions must be idempotent. The result
of multiple applications to a given expression must be the same as for a single
application: that is, alegal expansion function f satisfies f(f(z)) = f(z). For
instance, the following definition for the hypothetical operator op is erroneous:

(deflop op (x)
“(op (g ,x)))

When the expansion function returnst asits second value, the replacement and
its subexpressions are assumed to be completely expanded. Thisis an important
optimization, but it does not affect the semantics of expansioninacorrect rewriting
system.

This organization has two useful properties. One is that al or most of the
information relative to an operator is contained in asingle place, instead of being
spread across the description of several transformations involving that operator.
The other isthat all the transformations are donein asingle pass, instead of having
several transformation passesthat can interfere with each other, and that are difficult
to order properly.

3.1.3 Codeand Extensions

The unit of compilationin L is caled the module and corresponds to a file, cal
it mod.1. A module contains one or more L forms. The compilation of each

17

form produces target code, or compiler extensions, or both. We define compiler
extension any information used by the compiler to process other forms. For
instance, an operator definition is purely an extension. The definition of an L
function is mostly code, but it also produces a small extension: the binding of the
return type to the function name. Thisbinding is needed to determine the type of
acall to that function.

The compilation of amodule produces a few files containing C code (_mod. c,
_mod.h, and _mod.d), a file with debugging information (_mod.db), and afile
containing Lisp code (_mod. c1) that, when loaded, recreates the compiler exten-
sions of mod. 1. For efficiency, the extensionsfile _mod. c1 can be compiled. For
more efficiency, it can also be preloaded into aLisp image.

Expansion functions whose execution has side effects on the compiler state
must also record it in the compiler-extension file, by placing in it a form that
produces the same side effect. To help organizing this, the extension Lisp macro
evaluates its argument and outputs it to the compiler extension file. The form is
then replaced by its evaluated argument.

3.2 Operator Definition

The semantics of a new operator are specified in one of three ways: a rewriting
rule, alibrary function, or an output function.

Operator rewriting issimilar to Lisp macro expansion. Therewriting rule of an
operator isafunction that takesaform with that operator, and returns areplacement
form. Thisfunction is called the expansion function. Unlike Lisp, an L expansion
function may return aform with the same operator without causing an infinite loop.

Operators can aso be implemented by library routines. Such operators may
still have an associated rewriting rule, which are typically used to recognize special
uses of that operator, whereas the library function implementsthe general case.

Operators that are neither rewritten nor implemented as library functions must
have an output function. As an extension mechanism, the output function is meant
to be used when thetarget architecture hasfeatures that are accessible only through
syntactic extensions to C. The argument to an operator’s output function isaform
with that operator. The function outputs C code, and returns no values.

Two more attributes characterize an operator, the type descriptor and the syntax
template.

The type descriptor specifies the type of an expression with that operator. It
can be an L type expression, when the operator has afixed type; atype-computing

18

function, when the operator is generic or overloaded; or the :expand keyword,
when the type should be computed by first expanding the expression. The function
1-type returns the type of an expression according to these specifications.

The syntax template must be specified for operators that are not transformed
during the expansion phase. It specifies the structure of an expression with that
operator, and enables the L programmer to define the equivalent of Lisp specia
forms.

New operators are defined by the def1op macro. Because of itsrelevance, we
include here the definition of def1lop from the reference manua:

deflop Op args&key :type :template :output &rest body [Lisp macro]

deflop defines anew operator with name op. args specifies the arguments of an
expression with such operator, using the syntax of the argument list in a Common
Lisp macro definition. body is the body of the expansion function of the operator.
If there are no statements, the operator does not have an expansion function.

The : type keyword argument? can be:

e an L type expression. Any expression with this operator has the given L
type.

e aLisp function. This function takes a form with the given operator as
argument, and it returns an L type expression;

¢ the:expand keyword. Thisindicatesthat to computeitstype, theexpression
must be expanded first.

e the:first, :second, etc. keywords. Thisisashorthand for atypefunction
that returns the type of thefirst, second, etc. argument.

The default value for the : type argument is : expand.

The :template keyword argument is a form that specifies the structure and
some semantics of an expression with that operator. Templates are used for various
kinds of code traversal during and after the expansion phase. If an operator has
an expansion function, and expands into a form with a different operator, then its
template is useless.

A template is a list of template symbols and other templates. The template
symbols have semantic significance as explained:

2These are not keyword arguments in the strict Common Lisp sense, because positionally the
precede the body of the expansion function. However, they are parsed in the obvious way.

19

expr. AnL expression that returns avalue.

location. AnL expressionthat returnsalocation: for instance, theleft hand side
of an assignment operator, or a pass-by-reference parameter position.

name. A symbol that is not evaluated: for instance, a variable in the declaration
position of alet form, or other variable-binding constructs.

*. Some other kind of information associated with the form.
In addition, the following form has a special meaning:

(1ist template). Zero or more occurrences of template. This may only appear
asthelast subform of aform.

The default value for the operator templateis (1ist expr).

Thetwo variations of deflop, deflop-c and deflop-1lisp, define an expan-
sionfunctionfor the : c or : 1isp phase. Typeand template are not phase-specific.

3.3 Usesof the Expansion M echanism

3.3.1 Conditional Expansion

The Lisp variable xtarget* is bound, during the :basil phase, to either :c or
:1isp, depending whether the current expansion has C or Lisp asitstarget (pure
Basil is compiled into both). A macro expansion function can check the value of
xtarget and return different code for each case.

The Basil operator target-case packages this functionality concisely. It
takes two arguments. Thefirst is code to use when compiling into C, the second
when compiling into Lisp.

3.3.2 TypesasExpressons

Because types are treated as expressionsin L, the operator definition and rewriting
mechanism can be used for types as well. For instance, the n-dimensional domain
typein INFIDEL is defined by this simple code:

(deflop-c domain (n)

(declare (ignore n))
t)

20

This definition means that the type expression (domain n) isconverted to t in
the : c phase. Its effect is that domain values are represented by universal union
pointers.

3.3.3 Compile-time Evaluation

Some information about the values of the operands of an expression may be
available at compilation time. When complete information is available—that is,
the values themsel ves are known—it may be convenient to eval uate the expression
and replace it withitsvaue.

This situation occurs frequently in INFIDEL, for several classes of descriptor
objects. These descriptors are data objects describing control: on what data to
operate, how to partition large objects, etc. A simple example of what could be
considered a descriptor in FORTRAN is the upper bound of a DO loop with a
constant lower bound. INFIDEL descriptors are more complex.

Expansion functions are responsible for folding expressions. Two Lisp func-
tions are used as an aid to this purpose. The function lconstantp returns true
if its argument is L code with a known constant value. The function value-of
returns that value.

3.34 Demand-Driven Constant Propagation

Constant propagation is useful if the cost of reproducing a constant is lower than
the cost of maintaining it (storing and rel oading, or keeping it in aregister). When
thisis not the case, constant propagation may still be useful when the knowledge
of aconstant value provides opportunitiesfor further optimization. The L operator
clet propagates expensive constants. those that are expensive to reproduce, but
may be useful to know. If the initializing expression for a constant ¢ in a clet
clause expands into the constant value V/, then (1constantp ¢) — t during
expansion of the clet body, and (value-of ¢) — V. However, occurrences
of ¢ in the body are not converted into V. Only if al occurrences of ¢ disappear
during expansion, then theinitializing clause for ¢ is aso removed.

Thisbehavior is obtained by the use of the code-value operator, which takes
three arguments. code that generates that value (must always be present); the
value itsdlf, or the keyword :unknown if it is not known; and an association list
of keyword-value pairs, available to the programmer to propagate type-specific
information. This operator has no expansion function in the :basil phase, and it
expands into its first argument (the code) during the later phase (: c or :1isp).

21

Chapter 4

Reference

This chapter describes the Basil operators and the transformation mechanism of
L. The style and syntax follow the conventions of the Common Lisp reference
manual .

4.1 Program Structure and Transfor mation

A Basil/L program is composed of modules. Each module contains one or more
top-level forms. Each form may be a fragment of Basil code, or an L compilation
directive. Basil codeis transformed into C or Lisp code, which is then compiled
and executed. The transformation is divided in phases, summarized in figure 4.1.

A phaseis composed of passes. Thefirst passis the expansion pass, described
in 4.2. Thisisfollowed by zero or more ad-hoc passes. A programmer can extend
Basil by adding operatorsto the :basil phase, using deflop, or by adding a new
phase before it.

The :basil phasetransformsBasil codeinto anamelesslow-level form, which
can befedtothe : c or :1isp phases. The operatorsdeflop-c and deflop-1lisp
add operators to these phases. they are documented for completeness, but it is not
expected that they will be used in normal L programming.

4.2 Operator Rewriting

Forms are expanded top-down. A top-level form in a program is first read as a
Lisp object (atree of listsand other Lisp objects). Then the expander (thefunction

22

Basil

. basi |
phase

$

Low-level intermediate form

' C ‘lisp

phase phase
| !
C Lisp

Figure 4.1: The Basil phases

expand) traverses it destructively and returns an expanded tree. A form whose
operator has an associated expansion function, as defined by deflop or one of its
variants, is replaced with the object returned by the expansion function. The form
returned isitself expanded unless one or more of the following situations occur:

1. the operator of the form does not have an expansion function;
2. theoperator of theformisequa to the operator of the form before expansion;

3. theexpansion function returns t asits second value, indicating that the form
and its subforms have been completely expanded.

After aform hasbeen expanded, itsargumentsin expression positionsare expanded
as needed, unlessthe expansion function has returned t asits second value.

Operator expansion functions are phase-specific. Thedeflop operator defines
theexpansion function for the :basil phase. deflop-c and deflop-1lisp define
the expansion function for the : c and : 1isp phases.

deflop Op args&key :type :template :output &rest body [Lisp macro]

deflop defines anew operator with name op. args specifies the arguments of an
expression with such operator, using the syntax of the argument list in a Common

23

Lisp macro definition. body is the body of the expansion function of the operator.
If there are no statements, the operator does not have an expansion function.

The : type keyword argument? can be:

an L type expression. Any expression with this operator has the given L
type.

e aLisp function. This function takes a form with the given operator as
argument, and it returns an L type expression;

¢ the:expand keyword. Thisindicatesthat to computeitstype, theexpression
must be expanded first.

e the:first, :second, etc. keywords. Thisisashorthand for atypefunction
that returns the type of thefirst, second, etc. argument.

The default value for the : type argument is : expand.

The :template keyword argument is a form that specifies the structure and
some semantics of an expression with that operator. Templates are used for various
kinds of code traversal during and after the expansion phase. If an operator has
an expansion function, and expands into a form with a different operator, then its
templateis useless.

A template is a list of template symbols and other templates. The template
symbols have semantic significance as explained:

expr. AnL expression that returns avalue.

location. AnL expressionthat returnsalocation: for instance, theleft hand side
of an assignment operator, or a pass-by-reference parameter position.

name. A symbol that is not evaluated: for instance, a variable in the declaration
position of alet form, or other variable-binding constructs.

*. Some other kind of information associated with the form.
In addition, the following form has a special meaning:

(1ist template). Zero or more occurrences of template. This may only appear
asthelast subform of aform.

These are not keyword arguments in the strict Common Lisp sense, because positionally the
precede the body of the expansion function. However, they are parsed in the obvious way.

24

The default value for the operator templateis (1ist expr).

Thetwo variations of deflop, deflop-c and deflop-1lisp, define an expan-
sionfunctionfor the : c or :1isp phase. Typeand template are not phase-specific.

defsop hame argsform [Lisp macro]
defsop-c hame argsform [Lisp macro]
defsop-1lisp name argsform [Lisp macro]

Definea“simple’ operator. Thelambda-list args must beasimplelist of symbols.
The replacement form for name is obtained by this process. occurrences in form
of symbolsfrom lambda-list are substituted (viathe Lisp function subst) with the
corresponding actua parameters, and the resulting form is returned. The type and
template for name are the default ones from deflop. Example:

(defsop 1+ (x)

(+ x 1))
loplet ({(nameargs {expr}*)}*) body [L operator]
soplet ({(nameargs {expr}*)}*) body [L operator]

These forms are used to define operators locally to agroup of statements, just like
macrolet inLisp. loplet resembles deflop, soplet resembles defsop. Two
examplesfollow:

(soplet ((int-square (x)
(let (((int tmp) x))
(* tmp tmp))))
(int-square 42))

(loplet ((square (x)
“(let (((,(1-type x) tmp) ,x))
(* tmp tmp))))
(square 42.0))

lconstantp object [Lisp function]

lconstantp is true if and only if its argument evaluates to a known value.
lconstantp is false when its argument is a symbol or an expression that would

25

expand to a known value; to check if such objects have a known value, they must
be expanded first with the expand function. See aso the tt value-of function for
examples.

value-of object [Lisp function]

value-of returnsthe value, as aLisp object, of an L expression that evaluates to
aconstant. Examples:

(1constantp 42) --> t

(value-of 42) --> 42

(1constantp (quote 42)) --> t

(value-of (quote 42)) --> 42

(1constantp (code-value ’(val x) 42 nil)) --> t
(value-of (code-value ’(val x) 42 nil)) --> 42
(1constantp ’x) --> nil

1-type |-expr [Lisp function]

1-type returnsthetypeof I-expr if it can be computed in the current environment;
otherwiseit causes an error.

expand code [Lisp function]

expand returns the expansion of code using the current operator definitions. This
function is useful in writing expansion functions, particularly those that perform
constant folding. For instance, a constant folding + can be defined as follows:

(deflmacro + (x y)
(values
(let ((x (expand x))
(y (expand y)))
(if (and (lconstantp x) (lconstantp y))

‘(quote ,(+ (value-of x) (value-of y)))
“+ L,x L,y)))

t))

The macro returns the second value t to indicate that no further expansion is
necessary.

26

code-value code value other [L operator]

A code-value form is used to propagate values and other attributes of valuesin a
on-demand fashion. code contains L code. In the target-specific phase, a code-
value expression is replaced by code. In the :basil phase, the constantness of a
code-value form is determined by value. When the value of value is :unknown,
the value of the form is unknown; in all other cases, the value field represents the
compile-time vaue of the object.

Code-vaue forms, together with the functions 1constantp and value-of,
allow aform of constant propagation in which constant values are propagated only
to the pointsin which they are effectively used. Thisis useful when reconstructing
the constant value at run timeis expensive.

other is an association list of keyword-value pairs, and it is available to the
programmer for type-specific information. See aso deflstruct for an example
of itsuse.

4.3 Variables, Constants, and Blocks

Symbolsin an expression position are variables or symbol macros. Their meaning
iseither global or local, and it can be redefined locally.

defsconstant hameform [Lisp macro]
defsconstant-c hameform [Lisp macro]
defsconstant-lisp hameform [Lisp macro]

After one of these definitions, occurrences of name in an expression position are
replaced with form during the corresponding expansion pass.

slet ({(var form)}*) {expression}* [L macro]

Occurrences of each var are expanded with the corresponding formwithin the body,
except where var isrebound by another variable-binding form. The expanded code
isalet form with an empty argument list.

clet ({((typevar) form)}*) {expression}* [L operator]

Each formis expanded, and if it expands into a constant, the corresponding var is
bound to a code-value form with value set to that constant, and code set to var.

27

Occurrences of var in the body expand into that code-value form.

If after expansions of the body al occurrences of var disappear, and form
expanded into a constant, then the initialization clauseis removed.

let ({((typevar) [form])}*) {expression}* [L operator]

let is the main locd-variable binding construct. The structure of the variable
declarationsis similar to that of aLisp 1let, except that the variable is replaced by
the pair (typevar), where typeisan L type expression.

When type is t, the pair (t var) may be abbreviated to var. Also, if var
has type t and is not initialized, the parentheses enclosing var may be dropped.
Examples:

;33 X has type int and is initialized to 42.
(let (((int x) 42)) ...)

;33 X has type int and is not initialized.

(let (((int x))) ...)

;33 X has type t and is not initialized.
(let (x) ...)

;33 int has type t and is initialized to x. Eh? What?
(let ((int x)) ...)

The last example is not recommended.

reflet ({((typevar) form)}+) {expression}+ [L operator]

Each formmust be interpretable as alocation. The compiler makesvar an aliasfor
the location denoted by formin the body. var can be used both to store and retrieve
the value in that location.

genvar &optional String [Lisp function]
genvar-global &optional string [Lisp function]

genvar returns a symbol with a name that is unique within the current function.
The symbol can be used to represent local variables. genvar-global returns a

28

symbol with a globally unique name. The optional string argument is used in
forming the name.

The naming convention in L is that names beginning with an underscore are
reserved for variables generated during macro expansion. Of them, the onesending
with an underscore are reserved for names that need to be globally unique.

4.4 Typesand Structures

The primitive types of L are those of C (char, int, float, double, void), with the
addition of type t, the universal union pointer. Derived types can be obtained with
the pointer, array, and fun constructors, and the def1type and deflstruct
forms.

Types are treated just like expressions during macro expansion.

t [L type]

Variables of this type may point to any structure defined by deflstruct, and
allocated by its structure constructor. Thisisthe L equivalent of Lisp’s dynamic
typing. Thetypet makesit easy to define “generic’ functions and data structures,
such as a list type. Objects of type t are garbage-collected in the C execution
environment.

pointer type [L type operator]
array length type [L type operator]
fun ({argtype}*) return-type [L type operator]

These constructors produce C's derived types.

defltype nametype [L operator]

This construct makes name equivalent to type, similarly to C's typedef.

deflstruct name {field}* [L operator]

deflstruct definesthe L structure name and creates severa functions and oper-
ators. Each field isa (type field-name) pair, or a single field-name, which stands
for (t name). Example:

29

(deflstruct point
(int x)
(int y))

The next few entries describe the operators defined by deflstruct.

alloc-name [L operator]

This function allocates an uninitialized instance of structure name, and returns a
pointer to that structure. The return type of thisfunctionist. Caling thisfunction
isthe standard way of alocating instances of hame on the heap.

name-p pointer [L operator]

name-p returns true if pointer points to a structure of type name, otherwise it
returns nil.

name-field pointer [L operator]

name-field is the field selector operator for the field field of name when accessing
the structure through a pointer. pointer should be of type t and should point to an
instance of name.

If pointer expandsto acode-valueform, thefield sel ector checksif the structure
represents a partial value. This is true if the other field of the form contains a
(:partial-value . instance) pair. instance must be an instance of structure
name with each field initialized either to : unknown or its compile-time value. If
the field field of instance is not : unknown, the field selector form expands to that
field, otherwise it remains unchanged.

name-field* expr [L operator]

name-field* is the field selector for an instance of name. expr should be of type
name.

make-name {field}* [L operator]

This operator isa By Order of Arguments (BOA) constructor for structure name.
When any of its arguments expands to a constant, make-name expands to a code-

30

value form representing a partia value (see name-field above). (Thisfunctionality
is currently unimplemented).

make-name {field}* [L function for C]

This function isa By Order of Arguments (BOA) constructor for structure name,
and isavailable only to the C outpui.

expand-name struct [Lisp function]

A Lisp function that converts a Lisp structure instance into C code. struct should
be an instance of structure name. This function translates structure instances into
C code during the : c expansion pass.

This concludes the descriptions of L operators created by deflstruct.

type-p object type [L operator]

type-p iStrueif object is a pointer to a structure of type type, otherwiseisfalse.

new type [L function for C]

new alocates space for a structure of type type, just like alloc-type, but is only
defined in C.

new* type size [L function for C]

new allocates space for avariable-sized structure of typetype. It isonly defined in
C.

45 Functions and Statements

L functions are semantically similar to Lisp functions, except the value must be
returned by areturn statement.

deflfun (type name) arglist {statement}* [L operator]
deflfun-pure (type name) arglist {statement} ™ [L operator]

31

deflfun defines an L function with name name and return type type. arglistisa
list triplets (mode type name) , where modeiseither val or ref, denoting argument
passing by value or by reference, typeisthe argument type, and name the argument
name.

deflfun-pure is like def1fun, but makes a Lisp version of the function
available for execution during compilation. Furthermore, when all argumentsto a
call to apure functions are compile-time constant, the call is evaluated during the
expansion pass, and it is replaced by the result.

Both def1fun and def1fun-pure define an operator with the same name of
the function. This definition can be overridden by a deflop after the function
definition. Should it occur before, its effect is obliterated by the def1fun.

451 Control Statements

if clausethen else [L operator]
when clause {statement} [L operator]
unless clause {statement}™ [L operator]
for (init test repeat) {statement}* [L operator]
while clause {statement}* [L operator]
loop {statement} [L operator]
break-loop [L operator]
return [expression] [L operator]
case keyform { ({ ({key}*) | key} {form}*)}* [L operator]

Most of these statements have obvious meaningin C or Lisp. They al have void
type, except if and case, which may return avalue. return isthe C return, not
the Lisp return. loop isaninfiniteloop. break-1loop transfers control to the first
statement that follows the enclosing 1oop.

dotimes (var count &key inlineinline-limit) {statement}* [L operator]

dotimes workslikein Lisp, but it also alows the two keyword parameters inline
and inline-limit. If count expands into a constant, and inlineis t, or inline-limit
is specified and count is less or equal to inline-limit, then the loop is expanded in
line. The default value for inlineisnil, and for inline-limitis 1. tt dotimes has
void type.

32

dotimes* (var count) {statement}*

[L operator]

dotimes* workssimilarly to dotimes, except it has no keyword parameters, and

var must aready be declared.

452 Assgnments

setq place value
setf place value

setq and setf are equivaent. They store a copy of valuein place.

incf place &optional delta
decf place &optional delta

These arethe sameasin Lisp.

45.3 Arithmeticoperators

The standard arithmetic operators are available.

46 Lists

The following list-related operators are avail able:

cons car cdr

car list

first list

cdr list

rest list

last list

push element list

pop list

nconc {list}*

append {list}*

mapcar operator {list}*
mapcan operator {list}

33

[L operator]
[L operator]

[L operator]
[L operator]

[L operator]
[L operator]
[L operator]
[L operator]
[L operator]
[L operator]
[L operator]
[L operator]
[L operator]
[L operator]
[L operator]
[L operator]

mapc operator {list}+ [L operator]
dolist (var list &key inline-limit) L operator {expr}™ [L operator]
length list [L operator]
nreverse list [L operator]
sort-list function list [L operator]

The syntax and semantics of these operatorsisidentical to their synonymous ones
in Common Lisp; with the exception of the mapping operators (mapcar, mapcan,
mapc) which take an operator (or slambda form) as their second argument; and
dolist, which does not return avalue, and takes a keyword argument specifying
amaximum list length for inlining theloop. The function argument of sort-1ist
must be an operator that isimplemented as afunction.

4.7 Compilation

An L program is typically developed in separate files, also called modules. L has
no mechanism for hiding information across modules: a function declared in a
moduleisvisible from all other modules.

Files containing L sources have the suffix .1. Compiling module.1 pro-
duces severd files: _module.c, containing C function and variable definitions;
_module.h, with C declarations to interface between modules;, _module. d, with
auxiliary definitionsfor C compilation; and _module. c1, which contains compiler
state information necessary to compile other modules.

module. c includes at its beginning the file all.h. For a system composed of
then modulesm,.1, ..., m,.1, the programmer must makethefileall.h include
ma.h, ..., m,.h, andthefileall.d mustincludems.4, ..., m,.d.

The forms in each L source file are read and processed one by one by the
function 1-compile-form.

The specia variable xauxiliary-c-forms* is set to the empty list before
processing the first form in afile. Macro expansion functions can add definitions
to this list. After processing the last form in the file, the forms contained in it
are output as C code. To insure that these forms are expanded in the correct
environment, the programmer should manually process them by applying expand
and translate-into-c to each.

1-compile {module}* [Lisp macro]

1-compile compilesthe code contained in thefile(s) module. 1. Itsargumentsare

34

not evaluated.

1-compile-module {module}* [Lisp function]

This function compiles one or more modules. Its arguments must be symbols.
The file names of the modules are obtained by appending "' .1" to the lower-case
version of the name of each symbol argument.

1-compile-formform [Lisp function]

CompiletheL form form.

need {module} " [L operator]

Thisform speficies that to compile correctly the current modul ethe compiler needs
information contained in module.

eval form [L operator]

Thisis an escape-into-Lisp mechanism. The expansion of thisform is obtained by
evaluating formas aLisp form.

literal string [L operator]

Thisisan escape-into-C mechanism. stringisoutput literally into the C output file.

target-select c-code lisp-code [L operator]

The expansion function of this operator returns c-code when thefina target of the
compilationis C, lisp-code when it is Lisp.

extension form [Lisp macro]

The argument of an extension form must be a function cal form. A form that
evaluates to the same value as the function call form is output to current compiler
extension file. Thereplacement of the extension formisitsargument. Example:

(let ((x ’x-value)

35

(y ’y-value))
(extension (f x y)))

isreplaced by (f x y), andtheform (£ ’x-value ’y-value) iSoutputto the
extension file. The argumentsof £ must have a printabl e representation that can be
read back in.

*xtargetx [Lisp variable]

Thisvariableisboundto either : c or : 1isp, depending on the current compilation
target.

auxiliary-c-forms [Lisp variable]

xauxiliary-c-forms iS set to nil at the beginning of the compilation of a
module. After al the forms in the module have been processed, the contents of
this variable undergo phase : ¢ transformations and is output. An L form should
be placed in thislist only after application of translate-into-c. Example:

(push (translate-into-c form) *auxiliary-c-forms*)

translate-into-c form [Lisp function]

translate-into-c returnsan L form that can be directly passed to the : ¢ phase
for further processing. It should be used with *auxiliary-c-forms*.

36

Bibliography

[HC89] Paul N. Hilfinger and Phillip Colella. FIDIL: A Language for Scientific
Programming, chapter 5, pages 97-138. Frontiersin Applied Mathemat-
ics. SIAM, 1989.

[Sem93] Luigi Semenzato. The INFIDEL Virtual Machine. Technical Report
UCB/CSD 93-761, Computer Science Division (EECS), Univ. Cdifor-
nia, Berkeley, July 1993.

37

| ndex

need, 11 expand-name, 31
auxiliary-c-forms, 34, 36 expand, 23, 26
xtarget*, 36 extension, 35
:unknown, 30 first, 33
alloc-name, 30 for, 9, 32

append, 33 fun, 29

array, 29 genvar-global, 28
break-loop, 32 genvar, 28

car, 33 if, 10, 32

case, 10, 32 incf, 33

cdr, 33 l-compile-form, 35
clet, 8, 27 l-compile-module, 35
code-value, 27 l-compile, 34
cons, 33 1-type, 26

decf, 33 last, 33
deflfun-pure, 92, 31 lconstantp, 25
deflfun, 9, 31 length, 34

deflop, 19, 23 let, 8, 28

deflstruct, 10, 29

defltype, 29
deflvar, 9

defsconstant-c, 27
defsconstant-lisp, 27
defsconstant, 9, 27

defsop-c, 25

literal, 35
loop, 10, 32
loplet, 8, 25
make-s, 10

make-name, 30, 31

mapcan, 33
mapcar, 33

defsop-lisp, 25 mapc, 34
defsop, 25 nconc, 33
dolist, 34 need, 35
dotimes*, 33 new¥, 31
dotimes, 9, 32 new, 31

eval, 35

nreverse, 34

pointer, 29
pop, 33

push, 33
reflet, 8, 28
rest, 33
return, 32
setf, 33
setq, 33
slet, 8, 27
soplet, 8, 25
sort-list, 34
target-select, 35
translate-into-c, 36
type-p, 31

t, 29

unless, 32
value-of, 26
when, 32
while, 32
name-p, 30
name-fieldx, 30
name-field, 30
fact, 6

boa constructor, 31
location, 7
simple-lambda, 7

value, 7

39

