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ABSTRACT —Two simple sensitivity invariants are derived for con

tinuously equivalent networks. The first one states that the sum of

sensitivities with respect to all elements in a network is invariant

under continuously equivalent transformation. The second one states

that the individual sensitivity for capacitances and inductances is in

variant if there are no capacitance loops and inductance cut-sets in a

network.
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The theory of continuously equivalent networks which was first

introduced by Schoeffler [ l] has generated considerable amount of

interest recently [2-5]. The theory is an extension of the Howitt trans

formation [6] for deriving equivalent networks; however, it allows all

elements in a network to vary continuously as functions of a single

"dummy" parameter. The method is quite general, flexible and easily

programmed. Schoeffler and others have employed the method to gen

erate equivalent networks and meantime minimize sensitivity. The

purpose of this paper is to derive two simple sensitivity invariants of

continuously equivalent networks. The first invariant deals with the

sum of sensitivities with respect to all elements in a network. The

second invariant concerns the sensitivity of individual reactive elements

in a network.

Consider an arbitrary linear time-invariant RLC network having

n elements with values x.,, i = 1, 2, ... , n. Let us call the n-vector x

the element vector whose components are x.. Let H be the particular

network function of interest. Under continuously equivalent transfor

mation x is varied as a specific function of a dummy parameter z while

H remains invariant. Let the conventional sensitivity for H with respect

to x. be denoted by S , that is
i x.

l

CH A Xi 8H
Sx. = H" 8xT (1)

i l
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Our first sensitivity invariant is stated below:

Theorem 1 : The sum of the sensitivities for the network function H

with respect to all elements in a network is invariant under continuously

equivalent transformation, that is,

n

> o is invariant (2)

i=l X

This fact was observed in a special example in [ 5]; however,

no proof was given. The proof for this general invariant is simple.

Schoeffler has shown that under continuously equivalent transformation,

the element vector x satisfies a linear differential equation:

dx

dz~ = F* P)

where F is an n X n constant matrix, and z is the dummy parameter.

That is, the solution of Eq. (3) for any z gives the element value that

maintains the same network function Hx. The gradient of H with respect

to the element vector x is

q = grad H
tst x

l~3H 8H 3H ~| *
=IV **z "^J (4)
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H
The n-vector q is simply related to the n sensitivity functions S ,

1

i = 1, 2, ..., n. From Eq. (4) the ith element is

Thus

9H

qi = a" <5>
i

Sx. " -H- <6>
1

and the sum of the sensitivities becomes

n n

*i% <x,q>

L \= L ~ = -ir- <*>
i=l i=l

where <x, q> denotes the scalar product of the two vectors. Schoeffler

has also shown that the q vector satisfies the differential equation

dq

dz" = -r 3 (8)

which is the adjoint to the system of Eq. (3). From well-known property

of the adjoint systems [ 7] we have

<x,q> = constant (9)

Substituting Eq. (9) in (7), we conclude that the sum of all sensitivities
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is invariant under continuously equivalent transformation.

It is also of interest to point out that Eqs. (3) and (8) represent

a special case of a more general result obtained by Blostein [4], Since

Blostein's Theorem contains a minor error, the corrected version is

stated below:

It is conceivable that under a more general continuous trans

formation, the differential equation for the element vector is nonlinear:

dx

df = £«5> (10)

Then, the vector q satisfies the following linear differential equation:

af

d3
dT = " I ax I 5 <")=- L^J 2

Where 8x is the n X n Jacooian matrix.

The proof of this result is again simple. Since by definition the

network function H is invariant with respect to the parameter z ,
dH

Ve dz" = °- UsinS E3- (l0)> we obtain

n

dz /, 3x. dz = ^3' dz ^
i=l x

we

= <q»|> = o (12)

-5-



Differentiating the above with respect to z , we have

But

df

dz 2j 9x7 dz"
af

ax ~

i=l *

Equation (13) can be written as

dq \ / af

(13)

(14)

(15)

Since the above is valid for all f, Eq. (11) follows.

Our second sensitivity invariant is based on the state space

formulation of continuously equivalent transformation. Consider the

state equations of any linear time-invariant RLC network:

M *^r = Ny + bu~ at „ L ~

where y is the state vector, bu represents the input, M is a square

matrix with elements contributed by inductances and capacitances in a
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network, and N is a square matrix with elements due to resistances.

Calahan [ 2] has shown that under continuously equivalent transformation,

M and N satisfy the following differential equations

dM

dz"~
= BM + M A

dN

dz
= BN + NA

(16)

(17)

where B and A are constant square matrices containing parameters to

be chosen. Our second sensitivity invariant is given next.

Theorem 2 : Under continuously equivalent transformation, the indi

vidual sensitivity for the network function H with respect to the capaci

tances and inductances is invariant if there are no capacitance loops and

inductance cut-sets in the network.

The proof is given as follows: For a network without capacitance

loop and inductance cut-set, the matrix M in the state equation is

diagonal and is of the form

* C.

M =

- L.
(18)

' L.
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The differential equation for the element vector corresponding to capac

itances and inductances are of specially simple form. For example,

combining (16) and (18), we obtain typical equations:

and

dC.

-j-1 = (b..+ a..)C. = f.C.

dLk

"35" = (bkk+akk)Lk = fkLk

(19)

(20)

where f. and f are constants. In other words the differential equation

for the element vector which includes only the capacitances and inductances

of the network is of the form

dx

dz
= F x =

n

where F is diagonal. The solution of Eq. (21) is simply

f.z

x.(z) = e x.(0)
i i

l —1, 2, . .. , n

The differential equation for the vector q is
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dS t— = - F* q =
dz ~ «

and the solution is

-i

-f. z

q.(z) = e * q.(0)

-1

-f
n

i = 1, 2, .. • , n

Thus the sensitivity for the ith reactive element is

x.
l

x.(z)qi(z) x.(0)q (0)
H H

(23)

(24)

(25)

which is invariant, under continuously equivalent transformation.

Jh conclusion, we have derived two useful sensitivity invariants

for continuously equivalent networks. These invariants can be used as

simple guidelines for designers in generating equivalent networks when

sensitivity minimization is desired.
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