We present a system capable of performing similarity queries against a large archive of digital music. Users are able to search for songs which "sound similar" to a given query song, thereby aiding the navigation and discovery of new music in such an archive. Our technique is based on reduction of the music data to a feature space of relatively small dimensionality (1248 feature dimensions per song); this is accomplished using a set of feature extractors which derive frequency, amplitude, and tempo data from the encoded music data. Queries are then performed using a
k-nearest neighbor search in the feature space. Our system allows subsets of the feature space to be selected on a per-query basis.
We have integrated the music query engine into an online MP3 music archive consisting of over 7000 songs. We present an evaluation of our feature extraction and query results against this archive.
Title
Querying Large Collections of Music for Similarity
Published
1905-06-22
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
CSD-00-1096
Type
Text
Extent
13 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).