High performance for numerical linear algebra often comes at the expense of stability. Computing the LU decomposition of a matrix via Gaussian Elimination can be organized so that the computation involves regular and efficient data access. However, maintaining numerical stability via partial pivoting involves row interchanges that lead to inefficient data access patterns. To optimize communication efficiency throughout the memory hierarchy we confront two seemingly contradictory requirements: partial pivoting is efficient with column-major layout, whereas a recursive layout is optimal for the rest of the computation. We resolve this by introducing a shape morphing procedure that dynamically matches the layout to the computation throughout the algorithm, and show that Gaussian Elimination with partial pivoting can be performed in a communication efficient and cache-oblivious way. Our technique extends to QR decomposition, where computing Householder vectors prefers a different data layout than the rest of the computation.
Title
Communication Efficient Gaussian Elimination with Partial Pivoting using a Shape Morphing Data Layout
Published
2013-02-21
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
EECS-2013-12
Type
Text
Extent
18 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).