The caching behavior of multimedia applications has been described as having high instruction reference locality within small loops, very large working sets, and poor data cache performance due to non-locality of data references. Despite this, there is no published research deriving or measuring these qualities. Utilizing the previously developed Berkeley Multimedia Workload, we present the results of execution driven cache simulations with the goal of aiding future media processing architecture design. Our analysis examines the differences between multimedia and traditional applications in cache behavior. We find that multimedia applications actually exhibit lower instruction miss ratios and comparable data miss ratios when contrasted with other widely studied workloads. In addition, we find that longer data cache line sizes than are currently used would benefit multimedia processing.
Title
Cache Performance for Multimedia Applications
Published
2000-12-21
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
CSD-00-1123
Type
Text
Extent
29 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).