Rethinking Runtime Verification on Hundreds of
Cores: Challenges and Opportunities

Tayfun Elmas
Semih Okur
Serdar Tasiran

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2011-74
http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-74.html

June 13, 2011

Copyright © 2011, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Rethinking Runtime Verification on Hundreds of
Cores: Challenges and Opportunities

Tayfun Elmas', Semih Okur?, and Serdar Tasiran?

! University of California, Berkeley, USA,
elmas@eecs.berkeley.edu
2 Koc University, Istanbul, Turkey,
{sokur,stasiran}@ku.edu.tr

Abstract. We propose a novel approach for runtime monitoring and veri-
fication on computers with a large number of computation cores. The goal
of the approach is to minimize the impact of runtime verification on the
performance of the application being monitored. We distinguish between
two kinds of computational overhead: (i) overhead caused by instrumenta-
tion and/or logging, and (ii) parallelizable overhead due to the verification
algorithm(s) analyzing the executions. So far, runtime verification algo-
rithms have been designed to run on the same threads as the code being
monitored and both (i) and (ii) contribute to the slowdown of the program
being monitored. The framework we propose allows us to carry out (ii)
on separate, dedicated cores and threads. As a result, the program being
monitored only experiences slowdown due to (i). We conjecture that, with
some inexpensive hardware support, (i) can be reduced to negligible levels.
By parallelizing analyses so that they run at least as fast as the program
being monitored, but on separate computational resources, one can poten-
tially use this approach for monitoring, error detection, containment, and
recovery from errors. As a demonstration of concept, we investigate run-
time monitoring for concurrency bugs, in particular, data race detection.
We use a few CPU threads/cores and a large number of cores on a GPU
to minimize the slowdown of the application on which race detection is
being run. Our early experimental results indicate that this approach has
potential.

1 Introduction

Computers with tens to hundreds of CPU cores are expected to be commonplace in
the near future. This has resulted in an aggressive push for parallelization. Legacy
application and systems software is revised, and new software is developed explic-
itly to make use of a large number of cores. For software correctness and reliability,
this has significant consequences. Little if any of the aggressively concurrent soft-
ware is mature. Thus, it makes sense to dedicate some of the concurrent processing
power and hardware resources available on chips with many cores to monitoring
for concurrency errors, and reducing the impact of such monitoring on the threads
being monitored. In this paper, we propose such a framework. A key feature of our
framework is that decouples runtime verification algorithms from the programs

being monitored in a manner that makes it possible to run the programs and
analyses in parallel, thus minimizing the impact on program performance.

We propose an approach to make use of some of the computation cores and
other hardware resources in a computer to monitor the programs running on other
cores for concurrency errors, to contain and/or recover from these errors, if not
immediately, shortly after they take place. While exploring such an approach, we
had two goals:

1. to have minimal, tolerable impact on the threads being monitored, and
2. to have the monitoring algorithms work at the same speed as the program,
while possibly lagging behind by a bounded amount.

The rationale behind the first goal is to enable efficient, even post-deployment use
of the monitoring and bug-detection algorithms for safety-critical systems. The
rationale behind the second goal is to make it possible to contain concurrency
errors, notify the threads that have experienced the errors, and gracefully shut
down the program or to recover from the error. One result of the second goal is
to force the monitoring framework to parallelize the event logging and analysis
algorithms as much as possible.

These goals motivated us to distinguish between two kinds of overhead induced
by runtime monitoring and verification: (i) overhead caused by instrumentation
and/or logging, and (ii) parallelizable overhead due to the verification algorithm(s)
analyzing the executions. Traditionally, online runtime verification algorithms are
run on the same threads as the code being monitored and both (i) and (ii) con-
tribute to the slowdown of the program being monitored. The novelty of the frame-
work we propose is that it allows us to carry out (ii) on separate, dedicated cores
and threads. As a result, the program being monitored only experiences slowdown
due to (i). By parallelizing analyses so that they run at least as fast as the pro-
gram being monitored, but on separate computational resources, this approach
has the potential to enable continuous monitoring, error detection, containment,
and recovery from errors for systems with large number of cores.

In our approach, the application being monitored and the actual monitoring
code run on separate processing units/resources. They communicate with each
other using some shared memory or message passing. The instrumented applica-
tion code only has the additional responsibility of communicating relevant events
to the monitoring code. The monitoring and runtime analysis code can be quite
complex, but runs on separate processors and is parallelized, thus, the application
performance is not affected by the runtime analyses being performed. We con-
jecture that the performance penalty on the application being monitored due to
instrumentation and communication of relevant events can be reduced to negligible
levels, for example, using inexpensive hardware support such as hardware-assisted
message passing [5]. The goal is for the monitoring code to run at least the same
speed as the application being monitored, but lag behind by a very small delay due
to event communication. (In our experiments this delay was in milliseconds.) This
makes possible scenarios in which, in response to errors detected, the application is
shut down gracefully, or a previous valid checkpoint is restored or the application
is restarted.

As a demonstration of concept, we investigate runtime monitoring for concur-
rency bugs, in particular, data race detection. Since systems with hundreds of cores
are not yet available as mainstream, to investigate the feasibility of our proposal,
we use a few CPU threads/cores to carry out the efficient concurrent transfer of
logged events from the CPU cores to a Graphics Processing Unit (GPU), and
we use the GPU to run our race detection algorithm. Today’s GPUs provide a
highly parallel, multithreaded, computation environment with hundreds of pro-
cessor cores and a higher memory bandwidth than CPUs. Thus, our framework
allows us to investigate opportunities for efficiently performing various kinds of
runtime analyses on highly parallel computing environments.

We provide a framework that instruments binaries so that the application
threads log the interesting events in a central event list. The analysis threads
then work off of this event list to perform possibly expensive but parallelized anal-
yses. The separation of recording of events from their analysis led us to investigate
techniques dedicated to efficient recording of events. For this purpose, in the fu-
ture, inexpensive hardware support may be provided. For this, we use carefully
designed non-blocking algorithms and block-based handling of the event list for
efficient recording of the events in this list. In particular, we communicate the
events to the GPU for processing in fixed-size segments called frames. We accom-
plish fast, highly parallelized runtime analysis on a GPU with hundreds of cores
by exploring algorithms that can check each event frame independently from other
frames. Our experience was that this can be done without significantly affecting
the soundness of the checking. Long-enough frames allow the analyses to catch all
errors that can be caught by analyzing the entire execution. Since the computa-
tional cost of the analysis threads does not affect application performance, in this
highly parallel setting, one does not have to sacrifice precision in order to achieve
low performance impact.

For demonstration, we adapted the well known ERASER and GOLDILOCKS al-
gorithms for data race checking, so that they can be parallelized to run on a large
number of threads and cores on the GPU. Surprisingly, this high parallelism has
a simplifying effect on the algorithm implementation. Since we have many thread-
s/cores, the algorithm can be written to make each thread or core to perform
a local and independent check (for a single memory access) without having to
worry about sharing or interaction with other threads. Each thread creates only
the necessary data structures for the check and discards/reuses them after the
check completes; this avoids the need for memory management and sharing of
complicated algorithm-specific data structures.

We implemented our proposed system in a tool called KUDA. KUDA is open
source and available at http://kuda.codeplex.com. We use the Pin [6] library to
instrument binaries for monitoring and the CUDA [8] library to run our analysis
algorithms on the GPU. We applied KUDA to a number of multithreaded pro-
grams from the PARSEC and SPLASH-2 benchmark suites. We performed exper-
iments using CPU and GPU implementations of the ERASER and GOLDILOCKS
algorithms. We chose ERASER to represent a cheap (although imprecise) algo-
rithm, while GOLDILOCKS served as a representative precise, higher-complexity

algorithm. We contrasted two approaches: (i) a straightforward implementation of
ERASER running on the same threads and cores as the application, and (ii) an im-
plementation of GOLDILOCKS using our framework, where the checking threads are
decoupled and run on the GPU. Overall, our early experimental results indicate
that our approach is promising. Using a cheaper race detection algorithm using
the traditional approach as exemplified by (i) causes about twenty times more
slowdown compared to a more complex race-detection algorithm implemented in
our approach!

To the best of our knowledge, ours is the first study on decoupling runtime
monitoring algorithms for concurrent programs and parallelizing them so that
they run at the same speed with the monitored program, which, as a result, suf-
fers minimal performance impact. There is work on offline runtime verification
algorithms, where, while the application is being run, only logging overhead is in-
curred. However, such studies do not focus on parallelizing runtime analyses and
running them concurrently, at the same speed as the application. Thus, they do
not offer the same error containment and recovery potential as our approach. Fur-
thermore, these approaches do not pay attention to minimizing the resources used
for communication between application threads and analysis threads. Note that
the approach in our paper addresses a different problem from that of race-detection
for code running on GPUs.

2 Challenges in runtime monitoring

The purpose of this section is to point out the key challenges one is likely to
face when building a runtime verification tool for concurrency-related errors. In
order to make our ideas concrete we will work out this section using a well-known
data-race detection algorithm.

2.1 Example: Eraser algorithm for data-race detection

ERASER is a well-known lockset-based algorithm for detecting race conditions dy-
namically [10]. For simplicity of presentation, we focus on the core algorithm using
only locksets without distinguishing between read and write accesses.

A race condition occurs if two different threads perform conflicting accesses
(i.e., at least one of them is a write) on a shared (global) variable and there is no
proper synchronization between these accesses. In order to detect race conditions,
ERASER enforces the locking discipline that every shared variable x is protected
by a common lock throughout the execution.

The Eraser algorithm maintains for each variable z, a lockset LS(x) represent-
ing the set of the algorithm’s guess of the locks protecting x. It also maintains
for each thread t, a lockset LH(t) representing the set of locks held by thread ¢
at a given point in an execution. LH (t) is updated appropriately when thread ¢
acquires and releases a lock. The algorithm attempts to infer the actual protecting
locks for each data variable = by initializing LS(z) to the set of all locks in the
program and then updating LS(z) to be the intersection LH (t) N LS(z) at each
access to x by a thread t.

2.2 Cost of runtime monitoring on the CPU

The implementation of the ERASER algorithm requires 1) to monitor the events
in an execution that the algorithm needs to keep track of, which is usually done
by instrumenting the program’s source or binary code, and 2) to perform some
computation to update the algorithm-specific data structures, i.e., the maps LH
and LS, and check some conditions, i.e., “Does LS(z) become empty?”. In 1),
events are either immediately communicated to the algorithm by running a call-
back function to perform 2), or saved to a temporary buffer to be processed later
(e.g., in a linked list of events as in [3]). There are two main sources of runtime
cost, which combined together contribute highly the overhead of the monitoring
on the application:

The instrumentation cost, i.e., the cost of monitoring and communicating events to
the algorithm for processing. In ERASER, every shared memory operation and syn-
chronization (locking) operations has to be monitored. As the number and variety
of events monitored by the algorithm increases, the frequency of interrupting the
execution with callbacks to the algorithm increases and this becomes a bottleneck
even though the actions of the algorithm are simple and cheap. Our experimental
results in Sec. 5 show that only instrumenting the program (without performing
any computation at instrumentation points) can generate 1.6X to 7.1X overhead
on the uninstrumented program.

The analysis cost, i.e., the cost of processing the events and updating the algo-
rithm’s state accordingly. Runtime verification algorithms for concurrent programs
usually maintain data structures shared among the threads participating in the
algorithm, For example, the ERASER implementation maintains a lockset for each
thread and and for each shared variable. Other algorithms maintain, e.g., pointers
to the last accessing thread or an additional virtual-clock vector to internal locks
for synchronizing accesses by different threads. Fetching and manipulating these
data structures at high frequencies creates a considerable overhead and may cause
big divergences in the timing behavior of threads.

For ERASER, accessing the map LS (or LS(x), if the map is distributed) may
require to use a common lock to avoid two threads both accessing x to manipulate
LS(x) simultaneously. This creates large critical sections (code segments to be ex-
ecuted atomically) throughout the execution and is a significant source of runtime
overhead. In summary, while ERASER is one of the simplest, cheapest algorithms
for race detection, its implementations can cause considerable runtime and memory
overhead and this makes the race checking hard to apply at the post-deployment.

In order to reduce the runtime overhead of the checking, we distribute the
responsibilities for the algorithm to worker (checker) threads separate from the
application threads. Checker threads run on separate cores, and do not slow down
the application being monitored. In this paper, we investigate this idea by running
the runtime analyses on GPUs. Our novel approach has the side benefit of simplify-
ing the implementation of runtime verification algorithms, which are often forced
to make use of tricky data structures and optimizations when run on the same
threads as the applications. When run on separate cores, simpler but parallelized
implementations of these algorithms provide the required performance.

~

GPU

§§

GPU threads

Appllcanon threads Worker thread

L|st of event frames

Events,

fFull event frame
(See Fig. 2)

Algorithm-specific Result of checking
memory space

Fig. 1. Components of our runtime monitoring system.

3 Our approach I: Overall system

Motivated by the challenges given in the previous section, our main goal is to design
a runtime verification framework that will have the minimum negative impact on
the program’s running time and concurrency. Our key design decision is to carry
out the checking algorithm (i.e., data-race detection) on physically separate multi-
processors, in our case the GPU cores. The application threads running on the
CPU are only responsible for recording their events in a shared data structure and
communicating events to the GPU for further processing. Fig. 1 illustrates this
separation of responsibilities between the CPU and GPU threads. In this section,
we present our techniques for observing an execution trace, i.e., recording events
and communicating them to the GPU. The following section complements this
description by giving GPU-based algorithms for data-race detection.

3.1 Observing the execution trace

Our technique is based on logging the execution as a linear sequence of events and
running the analysis in a very efficient way. In order to enable efficient handling
of the event log, we process the a fixed-size segment of this log, called frame,
at a time. In our experiments we fixed this size as 1024-events and refer to it
by the FRAMESIZE constant. We treat each event frame a unit of input for the
analysis implemented in the GPU. Each frame is checked independently from other
frames and minimal information is kept between frames, e.g., racy variables to omit
accesses to those variables. When a frame is completely checked, the events in it
is discarded and it is reused to store later events.

While splitting the execution into independent frames may cause unsound re-
sults due to pairs of events from separate frames, our framework allows to adjust
the precision to increase the chance of finding bugs. We have chosen to defer the
soundness issue, since the goal of this study was to show the feasibility of highly
parallel, at-speed runtime verification. Empirical evidence by other researchers in-
dicates that this is a minor source of unsoundness: Many concurrency errors involve
a small number of threads, and can be detected by focusing on a short portion of
the execution [7].

Fig. 2 shows our main data structure for keeping event frames: a circular linked
list. At any time this list contains a fixed number of frames, where each frame is a
memory buffer to store FRAMESIZE events. As explained below, the circular linked
list allows us to reuse the frames in an efficient way throughout the execution. Fig. 2

Frames to be checked Helad E:> Frames to be filled TCLZZE> First frame
A A to check
[[R
|
Algorithm RecordEvent(e) Algorithm CheckFrames()
(Executed by application threads) (Executed by worker thread)
// Find the first frame to insert the event 1 while (program is running) {
1 frame := Head 2 wait until Head # Tail
2 index := AtomicGetAndIncrement(frame.size) 3 frame := Tail
3 while (index > FrameSize) { // Check frame at GPU
4 if (frame = Tail) { goto line 1 } // restart 4 Copy frame to GPU device memory
5 frame := frame.next 5 Asynch-Call GPU kernel for race checking
6 index := AtomicGetAndIncrement(frame.size) // Shift Tail to reuse the frame
7 frame.size := 0
// Insert event to the frame at index Tail := frame.next
8

6

7
framelindez] := e 8 wait until GPU kernel finishes
// Shift Head, if the frame becomes full 9 Copy result of the checking from GPU
9 if (index = FrameSize — 1) { Head := Head.next } 10 }

Fig. 2. The cyclic linked list of event frames and related algorithms.

shows pseudo code to record events (RecordEvent) and to process full event
frames, i.e., communicating them to the GPU for the analysis (CheckFrames).
While the former is performed by application threads, we dedicate a separate
worker thread (running on the CPU) for the latter.

The event list is managed by non-blocking algorithms with few atomic instruc-

tions; no lock is required to record an event and process an event frame. At any
point in the execution, we keep two pointers to frames in our event list: Head and
Tail. The part of the list between Head and Tail (both inclusively) contains the
frames (shown in white color in Fig. 2) that are being filled by application threads.
The rest of the list between Tail and Head contains the frames that have become
full and waiting to be checked (shown in gray color). At the initial state of the
event list Head and Tail points to the same frame. While frames become full, Head
is shifted, and as the full frames are checked, Tuil is shifted (as shown in Fig. 2).
In order to prevent data races on Head and Tuil, we read from and write to these
variables using atomic-reference operations.
Recording events (RecordEvent in Fig. 2). Each event frame has a field called
size, which stores the number of events in the frame. When an application thread
wants to record an event, it traverses the list starting from Head (lines 1-7). At
each step it performs an atomic operation that reads the current size of the frame
being visited and increments its size by one (lines 2 and 6). If size of the last
visited frame before incrementing was less than FRAMESIZE, then the thread uses
that value as indez of the frame to record the event (line 8). Otherwise, the thread
tries following frames in the list in a loop (lines 3-7). If a thread reaches Tail while
traversing the list, it restarts as this indicates that the current frame is full and
subject to checking by the worker thread. In our experiments we observed that,
because the checking of the frames runs at speed very close to the program, such
restarts were quite rare, i.e., there is always at least one empty slot to insert an
event between Head and Tail.

After adding the event to the right frame, if the current application thread

finds out that the current frame is Head and has just become full, it shifts the
Head pointer to the next non-empty frame in the list (lines 9).
Processing full event frames (CheckFrames in Fig. 2). Our worker thread
takes a full frame a time and sends it to the GPU for the checking (in Fig. 2 this is
the rightmost frame in gray). For this, the worker thread continuously executes the
loop until the program finishes (We omit the code that processes the non-empty
frames after the program terminates). At each iteration of the loop, the thread first
waits until Head and Tail do not point to the same frame, i.e., the list contains full
frames (line 2). When the condition holds, the thread locates the frame pointed by
Tail (line 3) and checks it at the GPU. See Sec. 4.1 for explanation of procedure
(lines 4-5 and 8-9) for running the analysis on the GPU. As the analysis on the
GPU runs asynchronously with the CPU, the worker thread spends the time to
wait until the GPU computation terminates to mark the currently checked frame
empty (line 6) and to shift Tail forward and make the frame available to be reused
to record new events (line 7). Upon completion of the kernel call (line 8), the
worker thread copies the result of the checking, i.e., racy accesses, from the GPU’s
memory back to the CPU’s memory (line 9), in an algorithm-specific memory
space. While our system reports all the errors at the end of the execution, it can
be modified to report the errors as soon as it gets the response from the GPU.

4 Our approach II: Checking frames on the GPU

Having explained the CPU part of our runtime monitoring system, we present par-
allel algorithms for the data-race checking on the GPU cores. We first brief on GPU
computing using the CUDA model and bring in some challenges in that model,
which affected our system design. Then, we present our adaptation of ERASER and
GOLDILOCKS algorithms to run on parallel GPU threads.

4.1 Background on GPU computing using CUDA

The CUDA model allows programmers to write code in an extension of the C
language that will be run on GPU in a highly parallel manner. The mapping of the
code to physical processing units on the GPU is transparent to the programmer,
and this enables one to write parallel code that can scale for devices with different
parallel processing capabilities.

Each code portion to be run on GPU is written as a C function called kernel and
can be called from C/C++ code executing on the CPU. Thus, in our framework,
each analysis algorithm is written as a C function. The CPU and GPU threads
operate on memory modules physically isolated from each other. As a result, we
have to maintain a separate memory space on the GPU’s own device memory. For
this, at the beginning of the execution, we pre-allocate a memory region, as large
to fit a full event frame, on the GPU’s own device memory at the beginning of
the execution. Additional space is also allocated to hold the intermediate results
and outputs of the kernel’s computation. The pointers to these memory regions
are given as arguments when to the kernel call. Our worker thread (running on
the CPU) must follow the following steps to run an analysis on a full event frame
(line numbers below refer to the pseudo code CheckFrames in Fig. 2).

1. The worker thread first copies the contents of the event frame to the pre-
allocated region on the GPU device memory (line 4).

2. Tt calls the kernel function of an available checker algorithm (line 5). That
kernel function is executed by the GPU cores in parallel and asynchronously
with the CPU. When calling the kernel function, it passes as arguments the
pointer to device memory region storing the current frame as well as additional
values, such as the number of events in the frame. Each kernel is executed in a
SIMD (single instruction, multiple data) style on multiple cores and threads.
The number and hierarchical organization of the threads participating in the
kernel’s execution are given as special arguments to the kernel call. Each GPU
thread gets a unique thread identifier among the other threads using special
threadIdx variable (in the scope of the kernel code). This unique id allows
the thread to determine parts of the event frame it should work on without
interfering with other threads.

3. The worker thread uses CUDA routines to synchronize with the kernel exe-
cution for further processing (line 8). Upon completion of the kernel call, the
worker thread copies the result of the checking, i.e., pairs of racy accesses in
the case of data-race detection, from the GPU’s device memory back to the
CPU’s memory (line 9) to be reported later.

While the CUDA model provides hundreds of cores available to the highly
efficient analysis of event frames, it also comes with the following challenges:

— Explicitly transferring the inputs and outputs of the kernel between the CPU
and GPU creates an extra communication overhead for each kernel call. Thus,
we chose the frame size carefully to manage this overhead. In addition, we
maintained any data that was not used in the checking separately and did not
sent it to the GPU; the rest of the data relevant for the checking was encoded
to fit small data structures to reduce the CPU-GPU communication cost.

— Although state-of-the-art GPU devices can have more than 1GB of memory
and latest CUDA libraries offer dynamic memory allocation in the kernel, we
believe that relying on limited amount of memory is essential for the effi-
ciency of the kernel execution. Therefore, we were determined to use fixed-size
representations for data structures (some of which are allocated prior to the
execution) that store locksets and racy pairs of accesses detected.

— CUDA enforces the SIMD execution model rather than the typical multiple-
instruction model in the CPU. This SIMD style execution of the kernel forces
one to implement the algorithm in a special form of data-parallelism in order
to get the maximum benefit from this model.

4.2 Data-race checking on the GPU

Given the challenges in writing kernels, we wrote parallel kernels for the ERASER
and GOLDILOCKS algorithms. Fig. 3 gives the pseudocode for these kernels. The
challenge in writing the kernels is to trade the challenges given above with the
large number of cores available on the GPU. In our algorithms, each thread checks
a unique variable access in the given event frame, creating the data structures, i.e.,

Algorithm EraserKernel
Input: Frame — Array of events.
Output: DataRaces — Pairs of racy events.

// Get thread id
1 id :=threadldx.x

// Fetch event

2 e := Framelid]

// check if this is an access event
3 if (IsRead(e.kind) or IsWrite(e.kind)) {

// find out the next access to the same variable

4 id =1

5 for (i = id to Frame.size) {

6 e’ := Frameli]

7 if (IsRead(e’.kind) or IsWrite(e’.kind)) {
8 if (¢’ .value = e.value) {

9 id =1

10 break

31y

// if there is another access, check that access
12 if (id' #-1) {
// compute LSg for the first accessor

13 LSa := LSk :=0

14 for (i =id+ 1 toid —1) {

15 e’ := Framel[i]

16 if (e’ .tid = e.tid) {

17 if (IsAcquire(e’’ .kind))

18 LS4 := LSa U {e" .value}

19 if (IsRelease(e’’.kind) and e .value ¢ LS4)
20 LSRr := LSr U {e" .walue}

21 1}

// compute LS’y for the second accessor
22 LS! :=LSg :=0
23 for (i = id’ — 1 back to id + 1) {

24 e’ := Frameli]

25 if (e .tid = €’.tid) {

26 if (IsRelease(e’ .kind))

27 LS4 := LSR U {e" walue}

28 if (IsAcquire(e’’.kind) and e” .value ¢ LS}y)
29 LS’y := LS’y U{e" walue}

30}

// perform the check for data race
31 if (LSrN LS, = 0)
32 DataRaces := DataRaces U (e, e’)

331}

Algorithm GoldilocksKernel
Input: Frame — Array of events.
Output: DataRaces — Pairs of racy events.
// Get thread id
1 id := threadldx.x
// Fetch event
2 e := Framelid|
// check if this is an access event
if (IsRead(e.kind) or IsWrite(e.kind)) {
// find out the next access to the same variable

4 dd :=-1
5 for (i = id to Frame.size) {
6 e’ := Frameli
7 if (IsRead(e’.kind) or IsWrite(e'.kind)) {
8 if (e'.value = e.value) {
9 id =i
10 break
1)}
// if there is another access, check that access
12 if (id #-1) {

// initialize a local lockset for e.value
13 LS := {e.tid}

// run rules of the algorithm
14 for (i =id+ 1 toid — 1) {

15 e’ := Frameli]

// Process operations of kind Acquire
16 if (IsAcquire(e’ .kind) and e’ .value € LS)
17 LS := LS U {e".tid}

// Process operations of kind Release
18 if (IsRelease(e’ .kind) and e’ .tid € LS)
19 LS := LS U {e" .value}
20

// perform the check for data race
21 if (e’.tid ¢ LS)
22 DataRaces := DataRaces U (e, €’)

23 }}

Fig. 3. Pseudocode for the kernels running the ERASER and GOLDILOCKS algorithms.

locksets, necessary for the check locally (in its stack) and discarding them after
the check completes. Due to the limited GPU memory space and the requirement
to pre-allocate the memory used by the kernel, using finite-size representations for
data structures in the kernel is essential. For this, we represent locksets in both
the ERASER and GOLDILOCKS kernels with bloom filters, which can represent a
collection of addresses (of locks, variables, etc.) in constant-size bitsets. As the
data required for a single check is of finite size and used locally and temporar-
ily, dynamically created objects or threads do not create extra memory space or

management.

Each kernel in Fig. 3 takes an event frame (Frame) and returns a list of racy
events (DataRaces). We start by explaining the common portions of both kernels
between lines 1-12. Note that, F'rame is an array of events. We organize threads
in a one-dimensional thread block. Each thread obtains its id from threadldx.x

10

(line 1), and fetches the id" event from the frame (line 2). If the fetched event is
not a shared variable access (line 3), the thread terminates. Otherwise, between
lines 4-11, it finds the next access to the same variable (saved in e.value). If it
finds a next access within the same frame (line 12), then id’ stores the index of
the access and €’ stores information about that access. The thread then checks if
the accesses recorded at e and ¢’ involve in a race. The kernels differ in how this
checking is done.

EraserKernel computes two sets of locksets. Between lines 13-21, the lockset
LSg is computed to find out the locks released by the first accessor thread (e.tid)
after accessing the variable. We also use the lockset LS4 to avoid incorrectly
adding a lock to LSg that is acquired and released after the access. Between lines
22-30, the lockset LS’ is computed to find out the locks acquired by the second
accessor thread (e’.tid) before accessing the variable. We also use the lockset LS,
to avoid incorrectly adding a lock to LS, that is acquired and released before the
access. 3 At line 31, we compute the intersection LSg N LS. If this intersection is
not empty, then this means that the second accessor thread acquired at least one
of the locks the first thread was holding when it accessed the variable. Otherwise,
then the pair (e, e’) is added to the set of racy event pairs (line 32).

GoldilocksKernel uses only one lockset, LS, initialized to a singleton con-
taining the id of the first accessor thread (line 13). The thread traverses the events
(denoted €”) between e and e’ and update LS. Lines 16-20 applies the standard
rules for GOLDILOCKS [3]: If the current event e” is of an acquire and the lock
acquired (saved in e”.value) is in LS, then the thread acquiring the lock (saved
in e”.tid) is added to LS (lines 16-17). If the current event e” is of a release and
the thread acquiring the lock (saved in e”.tid) is in LS, then the lock acquired
(saved in €”.value) is added to LS (lines 18-19). In GOLDILOCKS [3], acquiring a
lock, start of a thread, joining a thread, and reading from a volatile variable are
all considered as acquire events, and releasing a lock, creating a new thread, end
of a thread, and writing to a volatile variable are all considered as release events.
Thus, the lines 16-20 can process any events in these categories. Upon completion
of the traversal at line 21, the thread checks if LS contains the id of the second
accessor thread. If the id is not in LS, then the pair (e, ¢’) is added to the set of
racy event pairs (line 22).

5 Implementation and experimental evaluation

We aim to evaluate two claims we referred to in Sec. 1: First, our separation of
monitoring and analysis to CPU and GPU significantly reduces the overhead of
the traditional approach in which both are performed on the same threads/cores.
Second, our analysis code runs at a similar speed as the program and finishes soon
after the program terminates. For this, we implemented our proposed system in

3 The technical reason for this slightly complex implementation, where LSk and LS’
are computed in two different loops and using additional locksets (LS4 and LS%),
is that bloom filters only support addition and lookup but not removal. Using other
representations for locksets (e.g., finite-size hash tables) would make this code simpler.

11

Benchmark Description Lines|#Threads|#Events|#Frames
PARSEC

blackscholes (L) |Black-Scholes partial differential equations 1661 9 238M 224K
bodytrack (L) tracking human body with multiple cameras 7385 10| 2707M 2.6M
canneal (L) cache-aware simulated annealing 1793 9 468M 449K
dedup (M) data stream compression 3681 25| 1993M 1.9M
fluidanimate (L) [simulating incompressible fluid 945 9| 2461M 2.3M
raytrace (S) optimized ray tracing >6K 9 332M 316K
streamcluster (S)|online clustering problem 2531 9 178M 166K
swaptions (L) monte carlo simulation 1615 9| 2731M 2.6M
x264 (M) H.264/AVC video encoder 3014 64| 1460M 1.4M
SPLASH-2

barnes Barnes-Hut for N-body problem 3507 4| 3035M 2.9M
cholesky blocked sparse cholesky factorization 5684 8 269M 254K
fmm adaptive fast multipole for N-body problem 5434 4| 1629M 1.5M
fft complex 1D FFT 1462 8 577M 556K
lu blocked LU decomposition 1380 8| 1087TM 1M
ocean large-scale ocean simulation 8176 8 531M 510M
radix integer radix sort 1530 8 302M 287K
raytrace optimized ray tracing 11043 9 332M 316K
water-nsquared water simulation w/out spatial data structure| 3098 4| 3120M 7.2M
water-spatial water simulation with spatial data structure 3655 4 727TM 701K

Table 1. Description of our benchmarks, and number of events and frames generated
at a typical run. For the PARSEC benchmarks the input size is given in parantheses
((8):simsmall, (M):simmedium, (L):simlarge), and for the SPLASH-2 benchmarks
we used the default inputs except that some values are taken from Table 1 of [1].

a prototype tool called KuDA and applied KUDA on a collection of multithreaded
benchmarks. KUDA consists of two parts:

1. A dynamic library containing the core functionality including the routines
for recording events, managing event frames, and running the race detection
kernels on the GPU. We use the CUDA 4.0 library [8] to write and call kernels
for analyzing frames and to manage the GPU resources (e.g., transferring data
to/from the GPU device memory). While our experiments are performed using
the global memory, our system can use constant and texture memory. The fact
that event frames are only read by the kernel enables us to make use of the
constant and texture memory, which are cached for fast read-only access.

2. A Pin [6] tool to dynamically instrument x86 binaries in order to callback the
routines in our dynamic library on certain events (shared memory read/write,
thread creation/join, and inter-thread synchronization). Our Pin tool supports
multithreaded programs written using the pthreads library (for thread cre-
ation and join, and synchronization primitives including mutex and reader-
s/writer locks).

5.1 Experiments

Benchmarks. We applied our tool KUDA on a collection of multithreaded pro-
grams from PARSEC [2] and SPLASH-2 [11] benchmark suites. The names, brief
descriptions, sizes (lines of code) of these programs are listed in Table 1. The
table also gives, for each benchmark, the number of threads, events, and frames
generated in a representative execution of the benchmark. Notice that, in a typi-
cal execution, our benchmarks generate a few hundreds of millions of events and
hundreds of thousands of frames, each of which is checked on the GPU.

12

Benchmark Uninstr.|Only Instrumented| Eraser on CPU Only with Events |Goldilocks on GPU
Runtime|Runtime|Slowdown|Runtime|Slowdown |Runtime|Slowdown|Runtime|Slowdown
PARSEC
blackscholes 1.31 2.83 2.1X| 136.04 101X 20.89 14.7X 29.27 21.1X
bodytrack 4.11 10.93 2.6X| 1044.48 251X| 305.11 72.5X| 317.58 75.6X
canneal 8.85 14.81 1.6X| 431.04 47X 67.5 6.9X 71.66 7.4X
dedup 2.25 7.06 3.1X| 972.12 429.9X| 202.94 88X| 233.56 101.6X
fluidanimate 3.29 8.46 2.5X| 1024.52 308X| 281.27 83.9X| 295.24 88.1X
raytrace 14.43 29.35 2X| >30min| >123.7X 98.24 5.7X| 105.37 6.2X
streamcluster 7.27 22.72 3.1X 244 31.4X| 419.21 55.5X| 434.94 57.7X
swaptions 2.61 8.01 3X| 1150.97 437X | 312.26 117.5X| 318.57 119.9X
X264 1.09 7.84 7.1X| 710.12 645.2X 172.2 151.7X| 176.66 155.8X
SPLASH-2
barnes 3.08 7.61 4X 1542 499.1X| 348.12 111.5X| 362.12 116.1X
cholesky 0.94 3.04 3.2X| 205.34 216.2X 32.61 32.4X 33.39 33.2X
fmm 1.85 5.53 2.9X 2697| 1455.8X| 169.45 89.6X| 186.21 98.6X
fft 1.47 3.2 2.1X| 329.21 222.7X 68.42 45.3X 72.52 48.1X
lu 0.44 2.63 5.9X 477 742.2X 123.6 190X| 131.21 201.9X
ocean 0.86 3.47 4X 262 301.6X 57.21 63.4X 61.21 68.1X
radix 1.07 2.18 2X| 136.62 126.6X 34.45 31.1X 36.53 33.1X
raytrace 14.6 30 2X| >30min| >122.2X 117.4 6.9X| 120.46 7.2X
water-nsquared 4.61 16.18 3.5X 3274 707.6X| 851.35 182.1X| 894.12 191.4X
water-spatial 0.63 2.91 4.6X 308 485.2X 74.67 114.9X 85.14 131.5X

Table 2. Results from our experiments. Running times are given in seconds.

Hardware. We performed our experiments on a HP xw9300 Workstation run-
ning Ubuntu Linux 10.10 32-bit kernel. Our machine has two (single-core) AMD
Opteron processors with 2600 MHz clock frequency, 128 KB L1 cache, 1 MB L2
cache, and 8 GB memory (400 MHz). We used a GeForce GTX 465 GPU card
with Fermi chipset. Our card provides 352 cores (11 processors with 32 cores each)
with 1.21GHz clock rate, 1.23 GB of memory space with 1.4 GB/sec host-to-device
memory bandwidth and 71.3 GB/sec in-device memory bandwidth.
Configuration parameters. For the experiments, we chose the following pa-
rameters that gave the best results in terms of runtime and memory overhead. We
selected the event frame size (FRAMESIZE) to be 1024 events. We initialize the
cyclic list in Fig. 2 with 2048 frames. Thus, our system requires only

2048 frames * 1024 events (each frame) * 8 bytes (each event) = 16 MBytes of
memory space to store the events for the CPU. We run 128 GPU threads over
each event frame. In order to get the maximum benefit from the GPU device’s
concurrent computing functionality, we collect and send to the GPU 128 consec-
utive event frames at a time. In this way we aim to utilize the high parallelism on
the GPU to analyze multiple frames simultaneously.

5.2 Results

Table 2 gives the runtime measurements for several configurations we run for each
benchmark. The column “Uninstr.” lists the running time of the benchmark with-
out any instrumentation. For other columns, we report on both the running time
of the program and the slowdown in the execution over the uninstrumented run-
time. The running times for all columns are given in seconds. When computing the
slowdown for the columns “Eraser on CPU”, “Only with Events” and “Goldilocks
on GPU”, we subtract the instrumentation cost (i.e., “Only Instrumented” - “Unin-
str.”) from the runtime before dividing it to the running time of “Uninstr”.

13

The column “Only Instrumented” gives the results for the experiments when
the benchmarks were loaded with Pin and relevant instructions are instrumented,
but no action was taken at the instrumentation points except for calling an empty
function (simply no-op). The results indicate that the instrumentation even with-
out executing any extra code incurs overhead that ranges between 1.6X (canneal)
and 7.1X (x264).

In order to compare the runtime cost of our approach and the traditional
approach in which the race detection runs on the same cores as the application,
we implemented the ERASER, and two vector clock-based algorithms DJIT™T [9]
and FASTTRACK [4] (available in our code base). For these algorithms, we used
the same Pin instrumentation, but applied the algorithm’s rules on the application
threads immediately when a relevant event occurs. Our implementations are not
perfectly optimized as in the original implementations, but still provide a rough
estimate for the overhead of checking on the CPU.

We observed that the overhead of the DJITT and FASTTRACK implementa-
tions on the CPU are much higher than ERASER. Thus, the ERASER algorithm
provides lower bounds for the runtime and slowdowns for these algorithms and in
Table 2 we only list the results for ERASER under the column “Eraser on CPU”.
Notice that, the slowdown when running such a simple algorithm starts from 31.4X
(streamcluster) and can reach 1455.8X (fmm). Overall, running ERASER on the
same cores as the application incurs a very high overhead and a few hundreds of
times slowdown.

We give the results for our system under two columns. The column “Only with
Events” gives the results when the race checking on the GPU is disabled, but the
application threads are still recording their events. The column “Goldilocks on
GPU” gives the results when the race checking on the GPU is enabled. While our
system contains GPU kernels for both the ERASER and GOLDILOCKS algorithms,
we observed that the overhead when using ERASER gives only slightly lower over-
head. GOLDILOCKS is a precise race-detection algorithm, and is the most expensive
and complex one of the algorithms we investigated.

In both columns “Only with Events” and “Goldilocks on GPU”, we consider
the runtime of the execution after both the program and the analysis of the event
frames terminated. In fact, we observed that the analysis terminates shortly after
the program terminates. The difference ranges between 1-3 milliseconds (on av-
erage 2.5 milliseconds). In addition, we observed that our system does not need
to allocate new event frames; it simply reuses the initially allocated 2048 frames.
This result, together with the small difference between the execution times of the
program and analysis, indicates that the analysis runs at speed very close to the
program, following the program behind only in milliseconds.

Our results clearly indicate that performing the checking on separate cores
in a highly parallelized way dramatically reduces the overhead of the runtime
verification. The ratio of the slowdown of the race checking on the CPU to that of
the race checking on the GPU is between 3.3 (bodytrack) and 14.7 (fmm). Only for
streamcluster the CPU-based implementation beats our system and gives less
slowdown. Moreover, for raytrace benchmarks in both PARSEC and SPLASH-2,

14

the execution took more than our specified upper time limit, 30 minutes; thus
when we also consider these benchmarks, the ratio of the slowdown of the CPU-
based race checking to that of the GPU-based checking reaches at least 17 and 20
times, respectively.

In addition, the very small difference between the slowdowns in “Only with
Events” and “Goldilocks on GPU” shows that the overhead of monitoring and
recording events and managing the list of event frames highly dominates the over-
all overhead of our system. The ratio of the overall slowdown to that of only man-
aging the events goes only up to 1.4 (e.g., blackscholes). While the overhead of
recording events is still high (e.g., for post-deployment purposes), this small differ-
ence between enabling and disabling on-GPU checking gives a promising evidence
that the parallel processing events on the GPU gives negligible overhead.

References

1. C. Bienia, S. Kumar, and Kai Li. Parsec vs. splash-2: A quantitative comparison of
two multithreaded benchmark suites on chip-multiprocessors. In IISWC, pages 47
-56, 2008.

2. Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The parsec
benchmark suite: Characterization and architectural implications. Technical Report
TR-811-08, Princeton University, January 2008.

3. Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. Goldilocks: a race and transaction-
aware java runtime. In PLDI, pages 245-255, 2007.

4. Cormac Flanagan and Stephen N. Freund. Fasttrack: efficient and precise dynamic
race detection. In PLDI, pages 121-133, 2009.

5. Poletti Francesco, Poggiali Antonio, and Paul Marchal. Flexible hardware/software
support for message passing on a distributed shared memory architecture. In DATE,
pages 736—741, Washington, DC, USA, 2005.

6. Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building
customized program analysis tools with dynamic instrumentation. In PLDI, pages
190-200, 2005.

7. Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerard Basler, Pira-
manayagam Arumuga Nainar, and Iulian Neamtiu. Finding and reproducing heisen-
bugs in concurrent programs. In OSDI, pages 267-280, 2008.

8. NVIDIA Corporation. NVIDIA CUDA Programming Guide v4.0. NVIDIA Corpo-
ration, 2011.

9. Eli Pozniansky and Assaf Schuster. Multirace: Efficient on-the-fly data race detection
in multithreaded c++ programs. Concurr. Comput. : Pract. Ezper., 19(3):327-340,
2007.

10. Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas An-
derson. Eraser: a dynamic data race detector for multithreaded programs. ACM
Trans. Comput. Syst., 15(4):391-411, 1997.

11. Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and
Anoop Gupta. The splash-2 programs: characterization and methodological consid-
erations. In ISCA, pages 24-36, 1995.

15

