Automated synthesis of systems that are correct by construction has been a long-standing goal of computer science. Synthesis is a creative task and requires human intuition and skill. Its complete automation is currently beyond the capacity of programs that do automated reasoning. However, there is a pressing need for tools and techniques that can automate non-intuitive and error-prone synthesis tasks. This thesis proposes a novel synthesis approach to solve such tasks in the synthesis of programs as well as the synthesis of switching logic for cyberphysical systems.
The common underlying theme of the proposed synthesis techniques is a novel combination of deductive reasoning, inductive reasoning and structure hypotheses on the system under synthesis. We call this combined reasoning technique SCIDUCTION that stands for Structurally Constrained Induction and Deduction. SCIDUCTION constrains inductive and deductive reasoning using structure hypotheses, and actively combines inductive and deductive reasoning: for instance, deductive techniques generate examples for learning, and inductive techniques generate generalizations as candidate designs to be proved or disproved by deduction.
We use the proposed synthesis approach for automated synthesis of loop-free programs from black-box oracle specifications using functions from a library of component functions, synthesizing optimal cost fixed-point code with specified accuracy from floating-point code, and synthesizing switching logic of hybrid systems for safety and performance properties. We illustrate that our approach can be used to automate system synthesis, and thus, can prove to be an effective aid to designers and developers.
Title
Towards Automated System Synthesis Using SCIDUCTION
Published
2011-11-18
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
EECS-2011-118
Type
Text
Extent
215 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).