Description
In this paper we investigate the features of the transition to chaos in a one-dimensional Chua's map which describes approximately the Chua's circuit. These features arise from the nonunimodality of this map. We show that there exists a variety of types of critical points, which are characterized by a universal self-similar topography in a neighborhood of each critical point in the parameter plane. Such universalities are associated with various cycles of the Feigenbaum's renormalization group equation.