Description
In the past few years, computer graphics and computer vision researchers have made significant progress in subsequent analysis and compact factored or multiresolution representations for some of these problems. However, the initial full dataset must almost always still be acquired or computed by brute force. This is often prohibitively expensive, taking hours to days of computation and acquisition time, as well as being a challenge for memory usage and storage. For example, on the order of 10,000 megapixel images are needed for a 1 degree sampling of lights and views for high-frequency materials. We argue that dramatically sparser sampling and reconstruction of these signals is possible, before the full dataset is acquired or simulated. Our key idea is to exploit the structure of the data that often lies in lower-frequency, sparse, or low-dimensional spaces. Our framework will apply to a diverse set of problems such as sparse reconstruction of light transport matrices for relighting, sheared sampling and denoising for offline shadow rendering, time-coherent compressive sampling for appearance acquisition, and new approaches to computational photography and imaging.