Hierarchical SDF models are not compositional: a composite SDF actor cannot be represented as an atomic SDF actor without loss of information that can lead to rate inconsistency or deadlock. Motivated by the need for incremental and modular code generation from hierarchical SDF models, we introduce in this paper DSSF profiles. DSSF (Deterministic SDF with Shared FIFOs) forms a compositional abstraction of composite actors that can be used for modular compilation. We provide algorithms for automatic synthesis of non-monolithic DSSF profiles of composite actors given DSSF profiles of their sub-actors. We show how different tradeoffs can be explored when synthesizing such profiles, in terms of modularity (keeping the size of the generated DSSF profile small) versus reusability (maintaining necessary information to preserve rate consistency and deadlock-absence) as well as algorithmic complexity. We show that our method guarantees maximal reusability and report on a prototype implementation.
Title
Compositionality in Synchronous Data Flow: Modular Code Generation from Hierarchical SDF Graphs
Published
EECS Department, University of California, University of California at Berkeley, Berkeley, California, May 7, 2010
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
EECS-2010-52
Type
Text
Extent
25 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).