This paper studies approximate input decoupling of nonlinear MIMO systems, for those systems which exhibit numerical ill posedness or nearly singular behavior in the exact decoupling algorithms. Although the systems considered are regular so that the exact decoupling algorithms are applicable in this case, they require inversion of an ill conditioned matrix, and yield high gain feedback solutions which may result in actuator saturation. The approximate algorithms are numerically robust, and provide solutions which do not cancel far off right half plane zeros. This latter characteristic is especially valuable when some of the far off right half plane zeros are unstable. The algorithms are inspired by and are generalizations of some examples in the flight control literature ([7], [6], [8]).
Title
Approximate Decoupling and Asymptotic Tracking for MIMO Systems
Published
Computer Science Division, University of California at Berkeley, Berkeley, California, January 1993
Full Collection Name
Electrical Engineering & Computer Sciences Technical Reports
Other Identifiers
ERL-93-9
Type
Text
Extent
28 p
Archive
The Engineering Library
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).