Description
This study not only assesses the impact that different processors, network hardware interfaces, and Ethernets have on the communication across machines between user processes, but also the effect of the loading of the various components which participate in the interprocess communication mechanism. Thus, host and ether loads are also taken into account in our study. Our measurements highlight the current ultimate bounds on performance which may be achieved by user process applications communicating across machines, and serve as a guide in designing performance critical applications. For this study, hosts and ethers have been loaded with a user defined mix of tasks, i.e., an artificial workload.
Moreover, we present a detailed timing analysis of the dynamic behavior of the TCP/IP and the UDP/IP network communication protocols' current implementation in Berkeley UNIX 4.2BSD. This study sheds light on the tradeoffs encountered when software and hardware perform the same actions on data, e.g., checksums, and when several buffering schemes coexist at different levels in the system.